摘 要:根據(jù)六角彈簧管汽車碰撞吸能裝置的結構與工作原理,采用SolidWorks,Hypermesh和LS-DYNA仿真軟件,建立吸能裝置的有限元分析模型.應用所建立的有限元模型,分析了當配重塊質量為1.5 t,時速為50 km/h,汽車正面碰撞時吸能裝置的效能.仿真結果表明,六角彈簧管汽車碰撞吸能裝置具有很好的保護效果,汽車縱梁侵入量小(252.9 mm)、碰撞能量的吸收比高(52.09%)、汽車X方向加速度峰值低(58.8 g),驗證了該吸能裝置能有效地保護汽車和車內(nèi)乘員的安全.
關鍵詞:防撞性;車架;碰撞;彈簧管;吸能裝置;有限元
中圖分類號:U463.99 文獻標識碼:A
Research on the Performances of Hexagonal Spring Tube
Energy-absorbing Device for Car Crash
MENG Zhi-qiang1,HE Tao2,3, YIN Wang-wu4, JIANG He-ping2,CHEN Ying2
(1.College of Electrical and Information Engineering,Hunan Univ,Changsha,Hunan 410082,China;
2. Hunan Liangcai Automobile Safety Science Technology Co, Ltd, Changsha,Hunan 410010, China;
3.College of Mechanical and Electrical Engineering,Wuhan Univ of Technology,Wuhan, Hubei 430070,China;
4.College of Automotive and Mechanical,Changsha Univ of Technology,Changsha, Hunan 410000,China)
Abstract: Based on the structure and working principle of a hexagonal spring tube energy-absorbing device for car crash, this paper utilized the SolidWorks, Hypermesh and LS-DYNA to establish a finite element model for the device, and analyzed the performances of the device, under a frontal crash condition whose weight is 1.5 tons and speed is 50 km/h. Simulation results have shown that the energy-absorbing device have very good performances. For example, a smaller invasive amount for car stringer(252.9 mm), a higher crashing energy absorption ratio(52.09%) and a lower maximum X-direction acceleration for car(58.8 g).The above indices show that the device can protect the vehicle and the people in the vehicle.
Key words:crashworthiness; frame; crash; spring tube; energy-absorbing device; finite element model
隨著汽車工業(yè)的快速發(fā)展,汽車碰撞安全性問題越來越突出 [1].目前,提高汽車安全性的技術主要有車前保險杠、安全帶和安全氣囊等.近幾年,還提出了在汽車碰撞時能夠緩沖碰撞過程、吸收碰撞能量以及減少碰撞損失的汽車碰撞保護裝置 [1-3].
本文基于Hypermesh及LS-DYNA軟件平臺,建立六角彈簧管汽車碰撞吸能裝置(以下簡稱吸能裝置)[3]的有限元分析模型,對配重塊質量1.5 t,時速50 km/h的正面碰撞進行分析,研究吸能裝置對汽車縱梁侵入量、裝置吸能比、汽車X方向加速度峰值3大性能參數(shù)的影響,即研究該吸能裝置的效能.
1 吸能裝置組成及工作原理
吸能裝置結構如圖1所示,它包括左右兩組疊加的六角彈簧管1,內(nèi)嵌于1中的工字型彈簧鋼7,U型架2,連接汽車前保險杠4的搭子3,汽車前橫梁5,汽車縱梁6.
1—六角彈簧管,2—U型架,3—連接搭子,4—汽車前
保險杠,5—汽車前橫梁,6—汽車縱梁,7—工字鋼
不帶任何吸能裝置的裸車加速度峰值出現(xiàn)在車架前縱梁撞上剛性墻的時刻,達到117.5 g;彈簧螺栓式碰撞消能保護裝置的汽車加速度峰值稍低,為86.4 g;吸能裝置的汽車加速度峰值最小,為58.8 g.
6 結 論
本文使用SolidWorks,Hypermesh和LS-DYNA聯(lián)合建模求解方法,建立了六角彈簧管汽車碰撞吸能裝置的有限元模型,對碰撞變形——汽車縱梁最大侵入量、加速度和保護器吸能特性進行研究分析.仿真結果表明,吸能裝置具有很好的效能,汽車縱梁侵入量小(252.9 mm)、裝置的吸能比高(52.09%)、汽車X方向加速度峰值低(58.8 g),能有效保護汽車和人員安全,具有極大的實用價值.
參考文獻
[1] 雷正保,顏海棋.自適應沖擊能量吸收裝置:中國,CN ZL200710034933.2[P].2007-05-17.
LEI Zheng-bao,YAN Hai-qi.Adaptive impact energy absorption device:China,CN ZL200710034933.2[P].2007-05-17. (In Chinese)
[2] 姜樂華,孟志強,尹望吾,等.碰撞消能保護裝置:中國,201120095685.4[P].2011-04-02.
JIANG Le-hua,MENG Zhi-qiang,YIN Wang-wu,et al.The energy absorbing and protectivedevice for collision: China, 201120095685.4[P]. 2011-04-02. (In Chinese)
[3] 尹望吾,孟志強,江和平,等.六角彈簧管汽車碰撞保護裝置:中國,201110225312.9[P]. 2011-07-25.
YIN Wang-wu, MENG Zhi-qiang ,JIANG He-ping,et al. Hexagonal spring tube protecttion device for car crash: China, 201110225312.9[P]. 2011-07-25. (In Chinese)
[4] 李裕春,時黨勇,趙遠.ANSYS10.0/LS-DYNA基礎理論與工程實踐[M].北京:水利水電出版社,2006: 129-135.
LI Yu-chun,SHI Dang-yong,ZHAO Yuan.Basic theory and engineering practice of AN-SYS10.0/LS-DYNA[M].Beijing:China Water Power Press,2006:129-135. (In Chinese)
[5] 韋瓏珅,楊榮松,張勇.汽車保險杠碰撞的有限元仿真與優(yōu)化[J].現(xiàn)代制造技術與裝備,2008(3):24-26.
WEI Long-shen,YANG Rong-song,ZHANG Yong. The simulation and improvement of vehicle bumper crash function with finite element method[J].Modern Manufacturing Technology and Equipment,2008(3):24-26.(In Chinese)
[6] 何文,鐘志華.顯示有限元技術在車身薄壁梁結構件數(shù)值模擬中的應用[J].湖南大學學報:自然科學版,2005,32(1): 1-5.
HE Wen,ZHONG Zhi-hua. The application of finite element technology in the numerical simulation of thin-walled beam structure of the body parts [J]. Journal of Hunan University:Natural Sciences,2005,32(1): 1-5.(In Chinese)
[7] 張毅.客車整體骨架碰撞計算機仿真與耐撞性分析研究[D]. 武漢:武漢理工大學汽車工程學院,2006.
ZHANG Yi.Research on bus frame crash simulation and crashworthiness analysis[D]. Wuhan:College of Automotive Engineering,Wuhan University of Technology, 2006.(In Chinese)
[8] BENSON D J. A sing1e surfaee contact algorithm for the post-bucking analysis of shell structures[J].Computer Methods in Applied Meehanies and Engineering,1990,78:141-163.