999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Chemical Constituents of Ceratocarpus arenarius L.

2012-02-15 06:48:13LIUShanshanSUNWenYANGHongbingSUNWanfuXinjiangBingtuanKeyLaboratoryforGreenProcessingofChemicalEngineeringSchoolofChemistryandChemicalEngineeringShiheziUniversityShihezi83003ChinaAnalysisandResearchCenterXinjiangUniversi
天然產物研究與開發 2012年12期

LIU Shan-shan,SUN Wen,YANG Hong-bing* ,SUN Wan-fuXinjiang Bingtuan Key Laboratory for Green Processing of Chemical Engineering,School of Chemistry and Chemical Engineering,Shihezi University,Shihezi 83003,China;Analysis and Research Center,Xinjiang University,Urumqi 830046,China

Introduction

Xinjiang is the largest distribution area of Chenopodiaceae plants in China due to its complex geographical environment and unique climatic conditions.Plants of Chenopodiaceae family are closely related to human life.For example,Beta vulgaris is the raw material for sugar manufacture;Chenopodium ambrosioides and Salsola collina are pharmaceutical raw materials;Anabasis aphylla is raw material for agricultural insecticide manufacture.

Ceratocarpus arenarius L.is an annual herb belonging to genus Ceratocarpus of Chenopodiaceae and is only distributed in Xinjiang in China.Current studies on C.arenarius L.mainly focused on ecology[1,2],researches on its chemical composition had not been reported.

Experimental

General

Melting point was determined on XT4-100B microelting point apparatus and uncorrected.1H NMR(400 MHz)and13C NMR(100 MHz)spectra were recorded on a Bruker-DMX 400 spectrometer in CDCl3,DMSO-d6and CD3OD,with TMS as an internal standard and reported in ppm(δ).Column chromatograph was performed with silica gel(200-300 mesh,Zhigao Huangwu Chemical Co.,China)and Sephadex LH-20(GE healthcare Bio-science AB).TLC on silica gel GF254was detected with I2and 5%H2SO4-EtOH solution.

Plant material

C.arenarius L.sample was collected from Manasi in Xinjiang,in September 2009,and was identified by Professor Yan Ping of Shihezi Unverisity.A voucher specimen had been kept in the laboratory for future reference.All plant materials were dried at room temperature and divided into small pieces before extraction.

Extraction and isolation

The air-dried aerial parts of C.arenarius L.(10 kg)were exhaustively extracted with alcohol at room temperature.The extract was evaporated under reduced pressure.The EtOH extract(1501.01 g)was then extracted with petroleum ether,ethyl acetate,chloroform and n-butanol.

The ethyl acetate extract(300 g)was subjected to a silica gel column chromatography using different solvent systems and yielded 8 fractions.Fractions 1-3 were not further purified because of low polarity.Compound 1(8.9 mg)was obtained from fraction 5 after subjecting to column chromatography eluted with petroleum ether-acetone(1∶0;6∶1)as white powder.Fraction 6 was subjected to column chromatography using petroleum ether-acetone(1∶0;3∶1)and Sephadex LH-20 column eluting with CHCl3-MeOH(1∶1),compound 2(35.8 mg)was obtained as white needle.Fraction 7 was subjected to silica gel column chromatography to give compound 3(30 mg).Compound 6(25 mg)was obtained from fraction 8 eluted with n-hexane-EtOAc(6∶1).Compounds 4(15 mg)and 5(20 mg)were obtained from fraction 4 after subjecting to repeated column chromatography using petroleum ether-acetone(1∶0;10∶1;5∶1).

Chloroform extract(12.06 g)was subjected to column chromatography on silica gel,six fractions were obtained by gradient elution with EtOAc-MeOH(1∶0;80∶1-20∶1).Fraction 1 was further separated by silica gel column chromatography and eluted with n-hexane-EtOAc(9∶1)to give compound 7(16 mg)as yellow powder.Similarly,Compound 8(30.1 mg)was isolated from fraction 2 eluting with CHCl3-MeOH(7∶3)as white needle.Compound 9(20 mg)was obtained from fraction 3 after subjecting to column chromatography eluted with CHCl3-MeOH(1∶0;80∶1)as colorless oil.Repeated column chromatography of fractions 4-6 eluting with CHCl3-MeOH(1∶0;15∶1;9∶1)afforded compound 10(11 mg)and compound 11(14 mg).

Structural identification

Compound 1White powder(EtOAc),mp 120-123oC;1H NMR(400 MHz,CDC13)δ:5.69(1H,br.s,H-6),3.68(1H,tt,J=5.2,10.8 Hz,H-3),2.52(1H,ddd,J=2.0,5.1,12.9 Hz,H-4α),2.40(1H,ddt,J=2.0,11.0,13.2 Hz,H-4β),2.24(1H,t,J=12.0 Hz,H-8),2.05(1H,dt,J=4.2,12.5 Hz,H-12β),1.20(3H,s,H-19),0.94(3H,d,J=7.0 Hz,H-21),0.87(3H,d,J=6.5 Hz,H-27),0.82(3H,t,J=7.0 Hz,H-29),0.68(3H,s,H-18);13C NMR(100 MHz,CDC13)δ:202.4(C-7),165.2(C-5),126.1(C-6),70.5(C-3),54.7(C-17),49.9(C-9,14),45.8(C-24),45.4(C-8),43.1(C-13),41.8(C-14),38.7(C-12),38.3(C-10),36.3(C-1),36.1(C-20),33.9(C-22),31.2(C-2),29.1(C-25),28.5(C-16),26.3(C-15),26.0(C-23),23.0(C-28),21.2(C-11),19.8(C-27),19.0(C-26),18.9(C-21),17.3(C-19),12.0(C-18,29).The spectral data were matched with literature[3],hence it was identified as 7-Oxo-β-sitosterol.

Compound 2White needle(EtOAc),mp 137-139oC;TLC and IR spectrum were identical to those of authentic sample;1H NMR(400 MHz,CDCl3)δ:5.33(1H,br.d,J=5.2 Hz,H-6),3.50(1H,m,H-3),0.99(3H,s,H-19),0.90(3H,d,J=6.6 Hz,H-21),0.84(3H,t,J=7.5 Hz,H-29),0.80(3H,d,J=6.9 Hz,H-27),0.78(3H,d,J=6.9 Hz,H-26),0.69(3H,s,H-18);13C NMR(100 MHz,CDCl3)δ:140.8(C-5),121.7(C-6),71.8(C-3),56.8(C-14),56.0(C-17),50.1(C-9),45.8(C-24),42.3(C-13),42.2(C-4),39.8(C-12),37.2(C-1),36.5(C-10),36.1(C-20),33.9(C-22),31.9(C-8),31.9(C-7),31.7(C-2),29.1(C-23),28.2(C-16),26.1(C-25),24.3(C-15),23.1(C-28),21.2(C-11),19.8(C-27),19.4(C-19),19.0(C-21),18.8(C-26),11.9(C-18),11.8(C-29).The data were in accordance with β-sitosterol[4,5].

Compound 3White amorphous powder(EtOAc),mp 264-266oC;Liebermann-Burchard reaction showed blue-green result;1H NMR(400 MHz,DMSO-d6)δ:5.33(2H,br.d,J=5.2 Hz,H-22,23),5.16(1H,m,H-6),4.90(1H,d,J=4.8 Hz,H-1'),4.43(1H,t,J=5.6 Hz,H-4'),0.95(3H,s,H-19),0.90(3H,d,J=6.4 Hz,H-21),0.83(3H,dd,J=2.8,7.2 Hz,H-29),0.78(3H,d,J=4.0 Hz,H-27),0.66(3H,d,J=8.0 Hz,H-26),0.62(3H,s,H-18);13C NMR(100 MHz,DMSO-d6)δ:140.7(C-5),138.3(C-22),129.0(C-23),121.4(C-6),100.8(C-1'),77.1(C-3),76.9(C-3'),76.7(C-5'),73.7(C-2'),70.3(C-4'),61.3(C-6'),56.4(C-14),55.6(C-17),49.8(C-9),45.4(C-24),41.9(C-13),39.1(C-12),38.5(C-4),37.0(C-1),36.4(C-10),35.7(C-20),31.6(C-7),31.3(C-8),29.4(C-2),28.9(C-25),27.7(C-16),24.0(C-15),22.8(C-28),20.8(C-11),19.9(C-26),19.3(C-19),19.1(C-27),18.8(C-21),12.0(C-29),11.9(C-18).Compound 3 was identified as stigmasteryl-3-O-β-D-glucopyranoside by a comparison of its spectral data and physical properties with those reported[6,7].

Compound 4Colorless solid(EtOAc);1H NMR(400 MHz,CDCl3)δ:3.64(2H,t,J=13.2 Hz,H-1),1.57(2H,t,J=6.4 Hz,H-2),1.38-1.19(26H,br.s,H-3 ~ H-14),0.89(3H,t,J=8.4 Hz,H-16);13C NMR(100 MHz,CDCl3)δ:63.1(C-1),32.8(C-2),31.9(C-14),29.7(C-5,13),29.7(C-6 ~C-12),29.4(C-4),25.8(C-3),22.7(C-15),14.1(C-16).The spectral data were matched with the reported[8],hence it was identified as n-hexadecanol.

Compound 5White needle crystal(EtOAc);1H NMR(400 MHz,CDCl3)δ:5.72(1H,br.s,H-4),1.18(3H,s,H-19),0.91(3H,d,J=6.4 Hz,H-21),0.84(3H,t,J=7.2 Hz,H-29),0.81(3H,d,J=7.2 Hz,H-26),0.73(3H,d,J=6.6 Hz,H-27),0.71(3H,s,H-18);13C NMR(400 MHz,CDC13)δ:199.7(C-3),171.8(C-5),123.8(C-4),56.0(C-17),55.9(C-14),53.8(C-9),45.8(C-24),42.4(C-13),39.6(C-12),38.6(C-10),36.1(C-20),35.7(C-8),35.6(C-1),34.0(C-22),33.9(C-2),33.0(C-6),32.1(C-7),29.7(C-25),29.1(C-16),28.2(C-23),26.1(C-15),24.2(C-28),23.1(C-11),21.0(C-26),19.8(C-27),19.0(C-19),18.7(C-21),17.4(C-29),11.9(C-18).The spectral data were matched with literature[9],hence it was identified as[24S]stigmast-4-en-3-one.

Compound 6Black-green solid(EtOAc);1H NMR(400 MHz,CDCl3)δ:9.50(1H,s,H-10),9.35(1H,s,H-5),8.56(1H,s,H-20),7.97(1H,dd,J=11.6,18.0 Hz,H-31),6.30(1H,d,J=1.6 Hz,H-32(E)),6.27(1H,s,H-132),6.19(1H,d,J=1.2 Hz,H-32(Z)),4.40(1H,m,H-18),4.23(1H,m,H-17),4.05(2H,m,H-174),3.89(3H,s,H-134),3.69(3H,s,H-121),3.66(2H,q,J=5.6 Hz,H-81),3.40(3H,s,H-21),3.21(3H,s,H-71),1.82(3H,d,J=7.2 Hz,H-181),1.69(3H,t,J=7.6 Hz,H-82),1.11(3H,t,J=7.2 Hz,H-175);13C NMR(100 MHz,CDCl3)δ:189.6(C-131),172.9(C-133),172.1(C-173),169.6(C-19),161.2(C-16),155.6(C-6),151.0(C-9),149.6(C-14),145.2(C-8),142.1(C-1),137.9(C-11),136.5(C-3),136.3(C-4),136.1(C-7),131.9(C-2),129.0(C-13),129.0(C-12),129.0(C-31),122.8(C-32),105.1(C-15),104.4(C-10),97.5(C-5),93.1(C-20),64.7(C-132),60.5(C-174),52.9(C-134),51.1(C-17),50.1(C-18),31.1(C-172),29.8(C-171),23(C-181),19.4(C-81),17.4(C-82),14.0(C-175),12.1(C-21),12.1(C-121),11.2(C-71).Compound 8 was identified as 173–ethoxyphaeophorbidea by comparison of its spectral data and physical properties with those reported[10,11].

Compound 7Yellow powder(chloroform),mp:291-292oC;1H NMR(400 MHz,DMSO-d6)δ:12.96(1H,s,H-5),10.84(1H,s,H-7),9.28(1H,s,H-4'),7.32(2H,s,H-2',6'),6.96(1H,s,H-3),6.56(1H,d,J=1.6 Hz,H-8),6.21(1H,d,J=2.0 Hz,H-6),3.89(6H,s,2 × OMe);13C NMR(100 MHz,DMSO-d6)δ:181.7(C-4),164.0(C-2),163.5(C-7),161.3(C-5),157.2(C-9),148.1(C-3',5'),139.8(C-4'),120.3(C-1'),104.3(C-2',6'),103.6(C-10),103.5(C-3),98.7(C-6),94.1(C-8),56.3(C-OMe).The data were in accordance with tricin[12,13].

Compound 8White needle(chloroform),mp:87-89oC;IR(KBr)cm-1:3340,3230,3020,1650,1590,1550,1510,1460,1380,1360,1280,1160,1120,1030,980,805;1H NMR(400 MHz,CD3OD)δ:7.43(1H,d,J=15.6 Hz,H-7'),7.06(1H,br.s,-NH-),7.05(1H,d,J=2.0 Hz,H-2'),7.00(2H,d,J=8.0 Hz,H-2,6),6.76(1H,dd,J=2.0,8.1 Hz,H-6'),6.69(1H,d,J=8.2 Hz,H-5'),6.43(2H,d,J=8.6 Hz,H-3,5),6.40(1H,d,J=15.6 Hz,H-8'),3.81(3H,s,3'-OMe),3.45(2H,t,J=7.2 Hz,H-8),2.72(2H,t,J=7.5 Hz,H-7).The data were in accordance with those of reported[14,15],hence compound 8 was identified as moupinamide.

Compound 9Colorless oil(chloroform);GC-MS(70 eV)m/z:41,57,83,113,131,149,167,279,390;1H NMR(400 MHz,CDCl3)δ:7.69(2H,dd,J=3.2,5.6 Hz,H-3,6),7.50(2H,dd,J=3.2,5.6 Hz,H-4,5),4.21(4H,m,H-2',2''),1.67(2H,m,H-3',3''),1.35(16H,m,H-4',5',6',8',4'',5'',6'',8''),0.89(12H,m,H-7',7'',9',9'');13C NMR(100 MHz,CDCl3)δ:167.8(C-1',1''),132.5(C-1,2),130.9(C-4,5),128.8(C-3,6),68.2(C-2',2''),38.8(C-3',3''),30.4(C-5',5''),28.9(C-4',4''),23.7(C-8',8''),23.0(C-6',6''),14.1(C-9',9''),10.9(C-7',7'').Compound 9 was identified as 1,2-benzenedicarboxylic acid,bis(2-ethylhexyl)ester by comparison of its spectral data with literature[16].

Compound 10Pale yellow oil jelly(chloroform);1H NMR(400 MHz,CDCl3)δ:5.41(5H,m,H-6,9',10',12',13'),4.17(1H,m,H-3),2.33(2H,t,J=7.5 Hz,H-11'),2.01(2H,t,J=14.0 Hz,H-2'),2.00(4H,m,H-8',14'),1.62(16H,m,H-3'-7',15'-17'),1.04(3H,s,H-19),1.02(3H,s,H-21),0.89(3H,t,J=6.3 Hz,H-18'),0.88(3H,m,H-29),0.85(3H,s,H-26),0.84(3H,s,H-27),0.69(3H,s,H-18);13C NMR(100 MHz,CDCl3)δ:173.5(C-1'),146.3(C-5),138.3(C-10'),129.3(C-12'),128.9(C-13'),125.4(C-9'),123.8(C-6),73.4(C-3),65.4(C-14),56.0(C-17),51.5(C-9),49.4(C-24),42.8(C-13),41.7(C-12),39.2(C-4),37.5(C-1),37.1(C-10),37.0(C-20),34.2(C-2'),34.0(C-22),32.0(C-7),31.9(C-8),31.9(C-6'),31.6(C-16'),29.7(C-7'),29.7(C-15'),29.5(C-4'),29.5(C-5'),29.4(C-25),28.8(C-16),28.0(C-2),27.7(C-14'),27.4(C-8'),26.4(C-23),25.9(C-11'),25.5(C-3'),24.9(C-15),23.1(C-28),22.7(C-17'),21.2(C-11),21.0(C-27),19.6(C-19),19.2(C-21),19.0(C-26),14.1(C-18'),12.3(C-29),12.0(C-18).Compound 10 was identified as β-sitosteryl linoleate by comparison of its spectral data with literature[17].

Compound 11Amorphous solid(chloroform);TLC reaction detected glucose;1H NMR(400 MHz,DMSO-d6)δ:6.66(2H,s,H-2',6'),6.60(2H,s,H-2″,6″),5.80(1H,dd,J=4.0,7.0 Hz,Glc-1),4.90(2H,t,J=4.5 Hz,H-2,6),4.24(7H,m,H-4 or H-8,Glc-2,3,4,6),4.05(2H,m,H-8 or H-4),3.93(1H,m,Glc-5),3.82(6H,m,2 ×OMe),3.79(6H,m,2 × OMe),3.11(2H,m,H-1,5);13C NMR(100 MHz,DMSO-d6)δ:152.8(C-3',C-5'),148.1(C-3″,C-5″),137.3(C-1'),135.0(C-4″),133.8(C-4'),131.5(C-1″),104.3(C-G1),103.8(C-2',6'),102.8(C-2″,6″),85.5(C-6),85.3(C-2),77.4(C-G5),76.7(C-G3),74.3(C-G2),71.4(C-4,8),71.3(C-G4),61.1(C-G6),56.6(C-1),53.8(C-5).From the analysis of NMR spectra and by comparison with reported spectral data[18,19],compound 11 was identified as syringaresinol mono-β-D-glucoside.

Reference

1 Gao R,Wei Y,Yan C.Amphicarpy and seed germination behavior of Ceratocarpus arenarius L..Chin J Ecol,2008,27:23-27.

2 Tian ZP,Lu JH,Yang QL,et al.The Anatomical structure of Ceratocarpes arenarius and its adaptation to three pieces of environmrnt.J Shihezi Univ,2008,26:668-671.

3 Ma XL,Lin WB,Zhang GL.Chemical constituents of Osmanthus yunnanensis.Nat Prod Res Dev,2009,21:593-599.

4 Li WH,Chang ST,Chang SC,et al.Isolation of antibacterial diterpenoids from Cryptomeria japonica bark.Nat Prod Res,2008,22:1085-1093.

5 Li C,Bu PB,Yue DK,et al.Chemical constituents from roots of Ficus hirta.China J Chin Mat Med,2006,31:131-133.

6 Lou FC,Ma QY,Du FL.Phytochemical study of Lysimachia foenumgraecum I.J China Pharm Univ,1989,20:37-39.

7 Wang JR,Peng SL,Wang MK,et al.Chemical constituents of Anemone tomentosa root.Acta Bot Sin,1999,41:107-110.

8 Xu SH,Yang K,Guo SH,et al.Studies on chemical constituents from Acropora pulchra.Nat Prod Res Dev,2003,15:109-112.

9 Cao JQ,Wang YN,Zhou YZ,et al.Isolation and identification of the chemical constituents from Blumea riparia DC.(Ⅱ).Chin J Med Chem,2008,18:449-451.

10 Wang LN,Xu BX,Lin HR,et al.Study on the chemical constituents of Geum japonicum var.chinense.Lishizhen med materia medica res,2009,20,798-799.

11 Jin PF,Deng ZW,Pei YH,et al.Two phaeophytin type analogues from marine sponge Dysidea sp..Chin Chem Lett,2005,16,209-211.

12 Wang JY,Chen D,Liang LJ,et al.Chemical constituents from flowers of Chrysanthemum indicum.China J Chin Mat Med,2010,35:718-721.

13 Hoang TL,Do TH,Chau TAM,et al.Constituents from the stem barks of Canarium bengalense with cytoprotective activity against hydrogen peroxide-induced hepatotoxicity.Arch Pharm Res,2012,35(1):87-92.

14 Qian TX,Yang SL,Xu LZ.Study on chemical constituents of Phaeanthus saccopetaloides(I).Nat prod Res Dev,1997,9(2):32-34.

15 Li Y,Qiu C,Zhang DM,et al.Studies on chemical constituents from branch of Trema angustifolia.China J Chin Mat Med,2004,29:235-237.

16 Su K,Gong M,Zhou J,et al.Chemical constituents from Nauclea Officinalis leaves.J Shehezi Univ,2010,28:257-259.

17 Wang R,Chou GX,Zhu EY,et al.Studies on chemical constituents of Paeonia veitchii L..Chin Pharm J,2007,42:661-663.

18 Lami N,Kadota S,Kikuchi T,et al.Constituents of the roots of Boerhaavia diffua L.III.Identification of Ca2+channel antagonistic compound from the methanol extract.Chem Pharm Bull,1991,39,1551-1555.

19 Song YB,Cheng WM,Qu GX,et al.Chemical constituents of Sinomenium acutym.J Shenyang Pharm Univ,2007,24,79-81.

主站蜘蛛池模板: 久久成人国产精品免费软件| 婷婷六月综合网| 在线国产毛片| 精品国产www| 国产精品自在线拍国产电影| 欧美日韩动态图| 国产成人精品一区二区秒拍1o| 免费欧美一级| 伊人激情综合| 久久香蕉国产线看观看式| 亚洲中文字幕国产av| 毛片大全免费观看| 国产视频久久久久| a毛片基地免费大全| 怡红院美国分院一区二区| 国产精品护士| 在线不卡免费视频| 黄色一及毛片| 亚洲乱亚洲乱妇24p| 2021亚洲精品不卡a| 72种姿势欧美久久久久大黄蕉| 伊人久热这里只有精品视频99| 亚洲AV永久无码精品古装片| 精品乱码久久久久久久| 另类综合视频| 国产成人h在线观看网站站| 国产在线观看高清不卡| 99视频国产精品| 日韩小视频网站hq| 午夜天堂视频| 91色在线观看| 欧美亚洲国产日韩电影在线| 日本高清有码人妻| 中文字幕人成乱码熟女免费| 亚洲精品午夜天堂网页| 丁香综合在线| 亚洲综合18p| 视频国产精品丝袜第一页| 小13箩利洗澡无码视频免费网站| 国产丰满大乳无码免费播放| 亚洲v日韩v欧美在线观看| 国产精品视频导航| 成人福利在线视频免费观看| 欧美亚洲国产精品第一页| 欧美日韩一区二区三区四区在线观看 | 青草91视频免费观看| 99这里只有精品免费视频| 日本午夜影院| 成年网址网站在线观看| 亚洲欧州色色免费AV| 久久国产亚洲欧美日韩精品| 中文字幕 欧美日韩| 亚洲一欧洲中文字幕在线| 天堂亚洲网| 精品人妻无码中字系列| 国内熟女少妇一线天| 国产欧美成人不卡视频| 国产一区二区三区夜色| 欧美国产日韩一区二区三区精品影视| 色天天综合| 亚洲精品无码不卡在线播放| 久久精品只有这里有| 亚洲天堂在线免费| 国产精品成人第一区| 人妻免费无码不卡视频| 91免费国产高清观看| a毛片免费在线观看| 乱人伦中文视频在线观看免费| 亚洲精品无码av中文字幕| 亚洲大学生视频在线播放| 99国产在线视频| 欧美啪啪网| 一级毛片在线直接观看| 在线免费不卡视频| 一级毛片不卡片免费观看| 亚洲va欧美va国产综合下载| 夜夜拍夜夜爽| m男亚洲一区中文字幕| 日韩大片免费观看视频播放| 天堂网亚洲系列亚洲系列| 亚洲综合天堂网| 久久婷婷综合色一区二区|