摘 要: 以早熟砂梨翠冠果實為材料,克隆了多聚半乳糖醛酸酶(PG)基因家族中的兩成員PpPG1和PpPG2。PpPG1 cDNA序列全長1 793 bp,開放閱讀框為287~1 666 bp,DNA序列長2 757 bp,包括8個外顯子和7個內含子,編碼一個含有459個氨基酸殘基的蛋白,預測的等電點(pI)為8.47,估計的相對分子質量為49.45 ku。而PpPG2 cDNA序列全長1 671 bp,開放閱讀框為120~1 316 bp,DNA序列長2 566 bp,包括3個外顯子和2個內含子,編碼一個含有398個氨基酸殘基的蛋白,預測的等電點(pI)為7.34,估計的相對分子質量為41.14 ku。PpPG1和PpPG2都含有糖苷水解酶Glyco_hydro_28亞家族和多聚半乳糖醛酸酶保守域,它們分別位于系統進化樹的兩個不同發育分枝上。在夏季貨架期,PpPG1和PpPG2基因的表達豐度先上升,PpPG1在采后16 d表達量達到峰值,PpPG2在采后8 d達到峰值,然后均下降;施加1-MCP處理后,PpPG1的表達不受影響,采后8 d的表達豐度下降,PpPG2的表達峰值延后,到采后16 d才達到表達高峰。與此同時,果實PG活性上升速度減緩,乙烯釋放速率下降,硬度下降速度減緩。上述結果表明,PpPG1與PpPG2為多聚半乳糖醛酸酶基因家族的不同成員,它們的表達均受乙烯調控,并且PpPG1和PpPG2都與翠冠梨在貨架期的果實軟化相關。
關鍵詞: 砂梨; 多聚半乳糖醛酸酶; 基因克隆; 序列分析; 表達特點
中圖分類號:S661.2 文獻標志碼:A 文章編號:1009-9980?穴2012?雪01-0017-07
Cloning two members of PG gene family from precocious sandy pear Cuiguan and the relationship between their expression and fruit softening during shelf life
LI Hui1,2, CONG Yu3, CHANG You-hong1,2*, LIN Jing1, SHENG Bao-long1
(1Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing,Jiangsu 210014 China, 2National Agricultural Science and Technology Jiangsu Innovative Center·Efficient Horticulture Crop Genetic Improvement Laboratory, Nanjing,Jiangsu 210014 China, 3State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing,Jiangsu 210008 China)
Abstract: PpPG1 and PpPG2, two numbers of the polygalacturonase gene family were cloned from precocious sandy pear Cuiguan (Pyrus pyrifolia Nakai.) fruit by RT-PCR and RACE methods. The results showed that PpPG1 cDNA sequence length is 1 793 bp, which has an open reading frame from 287 to 1 666 nucleotides and encodes a polypeptide including 459 residues. At the same time, PpPG1 DNA sequence consists of eight exons and seven introns. Predicted isoelectric point (pI) and relative molecular mass of PpPG1 protein were 8.47 and 49.45 ku, respectively. PpPG2 cDNA sequence length is 1 671 bp, which has an open reading frame from 120 to 1 316 nucleotides and encodes a polypeptide including 398 residues. At the same time, PpPG2 DNA sequence consists of three exons and two introns. Predicted isoelectric point (pI) and relative molecular mass of PpPG2 protein were 7.34 and 41.14 ku, respectively. Both PpEG1 and PpEG2 had glucoside hydrolase glyco-hydro-28 superfamily and polygalacturonase conserved domains. The phylogenetic tree analysis showed that PpPG1 and PpPG2 located at two different clades. The semi-quantitative RT-PCR results showed that both PpPG1 and PpPG2 gene expression abundance increased and then decreased during summer shelf life (28 to 32 ℃). Their expression peaks appeared at 16 and 8 days after harvest, respectively. After 1-MCP treatment, PpPG1 expression at postharvest 8 days was inhibited but its expression pattern was not affected. However, PpPG2 expression peak was delayed to postharvest 16 days but its expression abundant was not changed. The fruit characteristics changed after 1-MCP treatment, such as polygalacturonase activity increase speed alleviated, ethylene release rate decreased and fruit firmness decline speed slowed down. It was concluded that PpPG1 and PpPG2 were different numbers of polygalacturonase gene family and their expressions were regulated by ethylene. Both of them played roles in Cuiguan fruit softening during summer shelf life (28 to 32 ℃).
Key words: Pyrus pyrifolia Nakai.; Polygalacturonase; Gene cloning; Sequence analysis; Expression characteristic
軟化不僅是果實成熟的顯著特征[1],還是限制貨架期的重要因素[2]。在這個過程中,細胞壁的組成和動力學變化起主要作用。果膠和半纖維素的可溶化及解聚,導致細胞壁松動和解體[3],在參與果實軟化的眾多細胞壁相關酶中,多聚半乳糖醛酸酶(Polygalacturonase,PG)已被廣泛研究[4]。雖然單一的PG活性提高并不足以使果實軟化[5],但是在蘋果[6]、草莓[7]和香蕉[8]果實成熟過程中PG積累并負責多聚糖酸苷的解聚和可溶化,同時伴隨PG活性和mRNA 轉錄水平的上升,說明PG在果實軟化過程起著不可替代的作用。
PG基因屬于多基因家族,不同成員的時空表達和應激反應存在差異。目前,獼猴桃[9-10]、檸檬[11]、葡萄[12-13]、 柿[14]、西洋梨[15]、草莓[16]、杏[17]和桃[18-20]的PG基因已被分離,并且它們在果實軟化過程起不同的生理作用已經得到證明。
早熟砂梨是我國長江中下游地區廣泛種植的重要果樹,具備良好的食用品質和較高的經濟價值。由于其皮薄、果肉脆、果汁豐富、口感好,深受消費者青睞。然而,早熟砂梨果實采后的激烈生理變化導致其成熟期短和衰老迅速,直接影響貨架時間。闡明早熟砂梨果實分子軟化機理有助于調控其采收、貯藏和貨架時間,但目前與砂梨細胞壁降解相關的基因研究比較有限,僅見β-半乳糖苷酶[21]、阿拉伯呋喃糖酶[4]、木葡聚糖轉移酶[22]和內切-β-1, 4-葡聚糖酶[23]基因的克隆和表達分析。
我們以早熟砂梨翠冠為實驗材料,克隆并研究多聚半乳糖醛酸酶基因家族兩成員在采后貨架期的表達特點,結合施加乙烯受體抑制劑1-MCP處理,分析果實PG基因表達、PG活性、乙烯釋放速率和硬度變化,以期揭示PG在翠冠梨果實軟化過程中所起的作用,為采取適宜的農藝措施延長翠冠梨的貨架期提供理論依據。
1 材料和方法
1.1 材料
2008年7月30日在江蘇省農業科學院的砂梨種質資源圃采摘規格一致、無病蟲害和機械傷的成熟翠冠梨果實,采收當天運回實驗室,散盡田間熱后將480個果實隨機平均分為兩組,其中一組不經任何處理,另外一組用1.0 μl·L-1 1-MCP(0.14% 1-MCP粉劑由美國羅門哈斯公司提供)在密閉塑料箱中處理12 h,兩組果實均貯藏于室溫(28~32 ℃)條件下,模擬貨架期環境條件進行試驗,每組果實隨機選出60個用于PG基因克隆和表達特點研究,60個用于PG活性測定,60個用于乙烯釋放速率測定,60個用于果實硬度測定。
A3500反轉錄試劑盒和JM109感受態細胞購自Promega公司,SMARTerTM RACE cDNA Amplification Kit和pMD 19-T Vector購自TaKaRa公司, 膠回收試劑盒購自北京天根生物技術公司。引物由上海生工生物工程技術有限公司合成(表1)。
1.2 PpPG1和PpPG2基因克隆
翠冠梨果肉總RNA的提取參照姚玉新等[24]的方法,反轉錄合成單鏈cDNA作為RT-PCR模板。根據Genbank果實來源PG基因的保守氨基酸序列,設計簡并引物PpPG-S1和PpPG-F1,進行降落PCR擴增PG基因核心片段。cDNA 3′和5′末端序列采用SMARTerTM RACE cDNA Amplification Kit擴增獲得。比對、拼接核心片段、3′和5′末端序列,獲得兩個PpPG基因的全長cDNA序列信息,并設計2對引物PpPG1-QC-S1/PpPG1-QC-F1和 PpPG2-QC-S1/PpPG2-QC-F1來擴增它們的DNA序列。各輪PCR擴增所得產物用膠回收試劑盒純化后與pMD 19-T Vector連接,轉化JM109感受態細胞,挑取陽性菌落,PCR鑒定后由上海英駿生物技術有限公司測序。翠冠梨PG基因ORF的查找和核苷酸翻譯采用BioXM軟件,利用Gene Structure Display Server(http://gsds.cbi.pku.edu.cn/index.php)分析內含子和外顯子組成,結構域分析通過InterPro(http://www.ebi.ac.uk/InterProScan)完成。使用SignalP軟件3. 0版(http://www.cbs.dtu.dk/services/SignalP)進行信號肽預測,PSORT(http://psort.ims.u-tokyo.ac.jp/form.html)預測亞細胞定位,TMHMMServer v. 2.0 程序(http://www.cbs.dtu.dk/ services/TMHMM)和ProtScale(http://web.expasy.org/tools/protscale)分別進行蛋白序列跨膜區和疏水性分析,氨基酸聚類分析由DNAMAN軟件完成,所用的序列來自http://www.ncbi.nlm.nih.gov。
1.3 PpPG1和PpPG2表達分析
提取翠冠梨果肉總RNA,采用A3500反轉錄試劑盒合成單鏈cDNA,用PpPG1和 PpPG2基因跨內含子表達引物PpPG1-BD-S1/ PpPG1-BD-F1和PpPG2-BD-S1/ PpPG2-BD-F1進行半定量RT-PCR擴增,以砂梨肌動蛋白PpActin基因為內參照,采用引物PpActin-S1和PpActin-F1,在相同的條件下進行擴增,比較研究貨架期條件下PpPG1和PpPG2基因的表達情況。
1.4 PG活性測定
參照Asif等[25]的方法測定PG活性,反應混合液為1%多聚半乳糖醛酸(Sigma 公司)、醋酸鈉緩沖液(pH 5.0)和果肉酶提取液,40 ℃反應40 min后,加入3, 5-二硝基水楊酸終止反應,沸水浴10 min后于波長540 nm下定量分析酶水解生成的半乳糖醛酸含量。以不同濃度梯度的D-半乳糖醛酸(Sigma 公司)繪制標準曲線。每克果實每小時釋放1 mg的D-半乳糖醛酸定義為1個酶活性單位(U)。
1.5 乙烯釋放速率和果實硬度測定
乙烯釋放速率的測定參照李富軍等[26]的方法,將果實置于密封容器內,2 h后取樣,用島津GC29A氣相色譜儀測定乙烯產量,儀器柱溫70 ℃,檢測室溫120 ℃,載氣為Ar,流速20 mL·min-1。用鋒利的刀片削去果實赤道部果皮組織,采用日本產Kiya166型果實硬度計測定果實硬度(單位為kg·cm-2)。
2 結果與分析
2.1 PG基因的克隆和序列分析
利用簡并引物PpPG-S1和PpPG-F1進行降落PCR擴增,獲得了長度為257 bp的cDNA片段,測序后發現為2個不同的片段,分別設計特異引物,進行RACE擴增獲得3′和5′末端序列。比對、拼接核心片段、3′和5′末端序列,獲得兩個PpPG基因的全長cDNA序列信息,分別命名為PpPG1和PpPG2(Genbank登錄號JN048111和JN048113),利用引物PpPG1-QC-S1/PpPG1-QC-F1和PpPG2-QC-S1/PpPG2-QC-F1擴增獲得它們的DNA序列(Genbank登錄號JN048112和JN048114)。PpPG1 cDNA序列全長1 793 bp,開放閱讀框為287~1 666 bp,DNA序列長2 757 bp,包括8個外顯子和7個內含子(圖1),編碼一個含有459個氨基酸殘基的蛋白,預測的等電點(pI)為8.47,估計的相對分子質量為49.45 ku。而PpPG2 cDNA序列全長1 671 bp,開放閱讀框為120~1 316 bp,DNA序列長2 566 bp,包括3個外顯子和2個內含子(圖1),編碼一個含有398個氨基酸殘基的蛋白,預測的等電點(pI)為7.34,估計的相對分子質量為41.14 ku。
基于在線工具InterPro、SignalP和TMHMM的分析結果表明,PpPG1和PpPG2所推測的氨基酸序列均包含糖苷水解酶Glyco_hydro_28亞家族和多聚半乳糖醛酸酶保守域;PpPG1的第1~26位氨基酸殘基是疏水信號肽,信號肽裂解點位于第26與第27位氨基酸之間,PpPG2的第1~29位氨基酸殘基是疏水信號肽,信號肽裂解點位于第29與第30位氨基酸之間;亞細胞定位預測PpPG1和PpPG2定位于細胞壁上的概率最大;在PpPG1的第9~29位氨基酸殘基以及PpPG2第10~30位氨基酸殘基之間分別存在1個跨膜區,PpPG1和PpPG2都含有9個疏水性區域。PpPG1和PpPG2所推測的氨基酸序列均具有多聚半乳糖醛酸酶活性所必需的4個保守基序,它們在各物種PG蛋白中廣泛存在且高度保守[27],PpPG1中為SPNTDGIH(266~273AA)、GTGDDCIS(288~295AA)、 CGPGHGISIGSLG(310~322AA)和NGLRIKT(345~351AA); PpPG2中為SPNTDGIH(199~206AA)、 STGDDCVS(221~228AA)、CGPGH GISIGSLG(243~255AA)和NGVRIKS(278~284AA)。PG基因所編碼蛋白的系統進化分析(圖2)表明,果樹來源的PG基因家族分為3組,PpPG1和PpPG2是兩種不同類型的PG家族成員,分別位于不同的發育分枝上,它們所編碼的氨基酸分別與西洋梨PcPG2(AB067641)和PcPG3(AB067642)親緣關系最近。
2.2 PG基因的貨架期表達特點
在夏季貨架期,PpPG1和PpPG2基因的表達豐度先上升后下降,PpPG1在采后16 d表達量達到峰值,PpPG2在采后8 d達到峰值,然后它們的表達豐度均下降;施加1-MCP處理后,PpPG1的表達規律不受影響,但是采后8 d的表達豐度下降,PpPG2的表達豐度與對照組相似,但是峰值延后,到采后16 d才達到表達高峰。
2.3 PG活性變化
在夏季貨架期,多聚半乳糖醛酸酶活性隨著采后時間的延長而上升,采后8 d到達峰值,然后緩慢下降,施加1-MCP后,PG活性上升速度減緩,采后16 d才到達峰值,并且在峰值前PG活性均比對照組低(圖4)。
2.4 乙烯釋放速率和硬度變化
貨架期條件下,翠冠梨果實的乙烯釋放速率先上升后下降,呈明顯峰型變化(圖5)。采后8 d對照組果實乙烯釋放即達到高峰,峰值為85 μL·kg-1·h-1,而在相同的貨架期時間內,經1-MCP處理的果實乙烯釋放速率顯著低于對照,釋放高峰推遲到采后16 d才出現,并且釋放速率峰值較對照組下降了29.84%。貨架期條件下,隨著采收后時間的延長,翠冠梨對照組果實硬度迅速下降,采后20 d其硬度僅為采收時的60.39%,1-MCP處理后,果實變軟的速度減緩,表現在相同的貨架期時間內,果實硬度下降的幅度比對照組小,采后20 d其硬度僅比采收時下降30.15%(圖6)。
3 討 論
PG參與植物的發育進程,目前分離獲得的PG基因主要存在于成熟果實[10,25]、離層區或花粉[28-29]等組織中,通過系統進化分析,發現果樹來源的PG基因分為三大類,本研究獲得的兩個PG基因屬于不同的PG亞組(圖2)。雖然本研究分離獲得的翠冠梨2個PG基因所編碼的氨基酸序列都具備高等植物多聚半乳糖醛酸酶的保守區域,但是PpPG1和PpPG2基因序列(cDNA序列及所編碼氨基酸、DNA序列的內含子數目和長度均不相同,圖1)和貨架期表達特點(圖2)都存在差異,認為它們是砂梨PG基因家族的不同成員,并在果實軟化過程中起不同作用。
在不同種類果實成熟過程均能檢測到PG活性和相應基因表達量的增加,已有研究證明,果實的軟化過程和果膠聚合物的變性與PG基因的表達相關[15,30]。在翠冠梨夏季貨架期,隨著采收后時間延長,果實PG活性、PpPG1和PpPG2表達量和乙烯釋放速率都是先上升后下降,硬度持續下降。施加1-MCP處理后,果實PG活性上升速度減緩,PpPG1表達受抑制,PpPG2表達高峰延遲,乙烯釋放速率下降,硬度下降速度減緩,表明PpPG1和PpPG2基因的表達均受乙烯調控,與翠冠梨果實軟化相關,但是它們所起的具體作用仍需RNAi技術結合目的基因的遺傳轉化來加以闡明。
以西洋梨PG基因為探針,研究砂梨品種二十世紀采收后PG基因的表達,發現檢測不到PG1的表達,PG2僅有微弱的表達信號[31];而本研究中早熟砂梨翠冠果實有明顯的呼吸高峰,PpPG1和PpPG2在整個軟化過程均有表達,PpPG2的表達高峰出現時間與乙烯釋放高峰一致。由此可知,雖然翠冠和二十世紀都屬于砂梨品種,但是它們有著不同的果實軟化機制。
4 結 論
早熟砂梨翠冠PpPG1和PpPG2基因核苷酸序列(cDNA、DNA)長度、編碼蛋白、外顯子和內含子組成以及貨架期表達特點均存在差異,并且位于系統進化樹的不同發育分枝上。1-MCP處理能夠抑制翠冠梨在夏季貨架期間PG活性增加和PpPG1的表達,推遲PpPG2表達高峰,降低乙烯釋放速率,延緩果實硬度下降,即PpPG1與PpPG2屬于不同的多聚半乳糖醛酸酶基因家族成員,它們的表達受乙烯調控,均參與翠冠梨在夏季貨架期的果實軟化過程。
參考文獻 References:
[1] CHIN L, ALI Z, LAZAN H. Cell wall modifications, degrading enzymes and softening of carambola fruit during ripening[J]. Journal of Experimental Botany, 1999,50: 767-775.
[2] GOULAO L, COSGROVE D, OLIVEIRA C. Cloning, characterisation and expression analyses of cDNA clones encoding cell wall-modifying enzymes isolated from ripe apples[J]. Postharvest Biology and Technology, 2008, 48: 37-51.
[3] REDGWELL R J, MELTON L D, BRASCH D J. Cell wall dissolution in ripening kiwifruit (Actinidia deliciosa) solubilization of the pectic polymers[J]. Plant Physiology, 1992, 98: 71-81.
[4] TATEISHI A, MORI H, WATARI J, NAGASHIMA K, YAMAKI S, INOUE H. Isolation, characterization, and cloning of α-L-Arabinofuranosidase expressed during fruit ripening of Japanese pear[J]. Plant Physiology, 2005, 138: 1653-1664.
[5] GIOVANNONI J J, DELLAPENNA D, BENNETT A B, FISCHER R L. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening[J]. The Plant Cell, 1989,1: 53-63.
[6] JOHNSTON J W, HEWETT E W, BANKS N H,HARKER F R, HERTOG M. Physical change in apple texture with fruit temperature: effects of cultivar and time in storage[J]. Postharvest Biology and Technology, 2001,23: 13-21.
[7] VILLARREAL N M, ROSLI H G, MART?魱NEZ G A, CIVELLO P M. Polygalacturonase activity and expression of related genes during ripening of strawberry cultivars with contrasting fruit firmness[J]. Postharvest Biology and Technology, 2008, 47: 141-150.
[8] PATHAK N, ASIF M H, DHAWAN P, SRIVASTAVA M K, NATH P. Expression and activities of ethylene biosynthesis enzymes during ripening of banana fruits and effect of 1-MCP treatment[J]. Plant Growth Regulation, 2003,40: 11-19.
[9] ATKINSON R G, GARDNER R C. A polygalacturonase gene from kiwifruit (Actinidia deliciosa)[J]. Plant Physiology,1993,103: 669-670.
[10] WANG Z Y, MACRAE E A, WRIGHT M A, BOLITHO K M, ROSS G S, ATKINSON R G. Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production[J]. Plant Molecular Biology, 2000,42: 317-328.
[11] HADFIELD K A, ROSE J K C, YAVER D S, BERKA R M, BENNETT A B. Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly[J]. Plant Physiology,1998,117: 363-373.
[12] NUNAN K S, DAVIES C, ROBINSON S P, FINCHER G B. Expression patterns of cell wall-modifying enzymes during grape berry development[J]. Planta, 2001, 214: 257-264.
[13] DEYTIEUX-BELLEAU C, VALLET A, DON?魬CHE B, GENY L. Pectin methylesterase and polygalacturonase in the developing grape skin[J]. Plant Physiology and Biochemistry, 2008, 46: 638-646.
[14] LIU Le, RAO Jing-ping, CHANG Xiao-xiao. Cloning and sequencing full-length cDNA encoding PG gene in fruit of persimmon[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(4): 656-661.
劉樂,饒景萍,常曉曉. 柿果實多聚半乳糖醛酸酶基因克隆與序列分析[J]. 西北植物學報, 2009,29(4): 656 -661.
[15] HIWASA K,KINUGASA Y,AMANO S,HASHIMOTO A,NAKANO R,INABA A,KUBO Y. Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit[J]. Journal of Experimental Botany, 2003, 54: 771-779.
[16] SALENTIJN E M J, AHARONI A, SCHAART J G, BOONE M J, KRENS F A. Differential gene expression analysis of strawberry cultivars that differ in fruit-firmness[J]. Physiologia Plantarum, 2003, 118: 571-578.
[17] IGLESIAS-FERN?魣NDEZ R, MATILLA A J, RODRIGUEZ-GACIO M C, FERN?魣NDEZ-OTERO C, DE LA TORRE F. The polygalacturonase gene PdPG1 is developmentally regulated in reproductive organs of Prunus domestica L. subsp. Insititia[J]. Plant Science, 2007, 172: 763-772.
[18] MA Qing-hu, WANG Li-mei, SONG Yan-ru, ZHU Zhi-qing. Cloning and expression of a cDNA encoding endopolygalacturonase from Feicheng peach (Prunus persica) [J]. Acta Botanica Sinica,1999, 41(3): 263-267.
馬慶虎, 王莉梅, 宋艷茹, 朱至清. 肥城桃中多聚半乳糖醛酸酶基因的分離及其表達研究[J]. 植物學報, 1999, 41(3): 263-267.
[19] MORGUTTI S, NEGRINI N, NOCITO F F, GHIANI A, BASSI D, COCUCCI M. Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotypes[J]. New Phytologist, 2006, 171: 315-328.
[20] MURAYAMA H, ARIKAWA M, SASAKI Y, CIN V D, MITSUHASHI W, TOYOMASU T. Effect of ethylene treatment on expression of polyuronide-modifying genes and solubilization of polyuronides during ripening in two peach[J]. Postharvest Biology Technology, 2009, 52: 196-201.
[21] TATEISHI A, INOUE H, SHIBA H, YAMAKI S. Molecular cloning of β-galactosidase from Japanese pear (Pyrus pyrifolia) and its gene expression with fruit ripening[J]. Plant Cell Physiology,2001,42: 492 -498.
[22] CONG Yu, LIU Hong, LI Hui, YAN Zhi-mei, YU Ming-liang, CHANG You-hong. Cloning of an xyloglucan endotransglycosylase/hydrolase gene (PpXTH1) from mature sandy pear fruit and its expression characteristics during summer shelf life[J]. Jiangsu Journal of Agricature Science, 2010,26(1): 143-151.
叢郁, 劉洪, 李慧, 顏志梅, 俞明亮, 常有宏. 成熟砂梨果實木葡聚糖轉移酶基因PpXTH1的克隆及其在夏季貨架期的表達規律[J]. 江蘇農業學報, 2010, 26 (1): 143-151.
[23] CONG Yu, LI Hui, YAN Zhi-mei, YU Ming-liang, CHANG You-hong. Cloning two members of Endo-1, 4-β- glucanases gene family from sandy pear and their expression characteristics during shelf life[J]. Jiangsu Journal of Agricature Science,2010,26(2): 383-389.
叢郁, 李慧, 顏志梅, 俞明亮, 常有宏.砂梨2個內切-β-1,4-葡聚糖酶基因cDNA的克隆及其在果實貯藏過程中的表達分析[J]. 江蘇農業學報, 2010,26(2): 383-389.
[24] YAO Yu-xin, ZHAO Ling-ling, HAO Yu-jin, ZHAI Heng. Effective extraction of total RNA in apple flesh with improved hot borate method[J]. Journal of Fruit Science, 2005, 22(6): 737-740.
姚玉新, 趙玲玲, 郝玉金, 翟衡. 改良熱硼酸法高效提取蘋果果實RNA[J]. 果樹學報,2005,22(6): 737-740.
[25] ASIF M H, NATH P. Expression of multiple forms of polygalacturonase gene during ripening in banana fruit[J]. Plant Physiology and Biochemistry, 2005, 43: 177-184.
[26] LI Fu-jun, ZHAI Heng, YANG Hong-qiang, ZHANG Xin-hua, SHU Huai-rui, ZHOU Jie. Effects of 1-MCP on ethylene synthesis and metabolism of apple during storage[J]. Scientia Agricultura Sinica, 2004, 37(5): 374-378.
李富軍, 翟衡, 楊洪強, 張新華, 束懷瑞, 周杰. 1-MCP對蘋果果實貯藏期間乙烯合成代謝的影響[J]. 中國農業科學, 2004, 37(5): 374-378.
[27] PARK K C, KWON S J, KIM P H, BUREAU T, KIM N S. Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus[J]. Genome, 2008, 51: 30-40.
[28] ZHANG Q, HUANG L, LIU T, YU X, CAO J. Functional analysis of a pollen-expressed polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L. ssp. chinensis Makino)[J]. Plant Cell Report, 2008, 27: 1207-1215.
[29] HUANG L, CAO J, ZHANG A, YE Y, ZHANG Y, LIU T. The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development[J]. Journal of Experimental Botany, 2009, 60: 301-313.
[30] ROSE J K C, HADFIELD K A, LABAVITCH J M, BENNETT A B. Temporal sequence of cell wall disassembly in rapidly ripening melon fruit[J]. Plant Physiology, 1998,117: 345-361.
[31] HIWASA K, NAKANO R, HASHIMOTO A, MATSUZAKI M, MURAYAMA H,INABA A,KUBO Y. European, Chinese and Japanese pear fruits exhibit differential softening characteristics during ripening[J]. Journal of Experimental Botany,2004,55: 2281-2290.