鮑俊艷,高春霞,葛志英
(1.河北大學 數學與計算機學院,河北 保定 071002;2.河北大學 電子信息工程學院,河北 保定 071002;3.河北工程大學 理學院,河北 邯鄲 056038)
隨著科學技術的迅速發展,在生物、物理及工程應用等技術領域出現了具有脈沖影響的非線性微分系統的數學模型.這種數學模型描述的是在某個時刻狀態會突然發生改變的動力過程,因此脈沖微分方程更具有一般性和應用性,吸引了國內外很多學者從事脈沖微分方程的研究工作,并得到了很多脈沖微分方程解的穩定性及存在性結果[1-10].
另外,近年來集值微分方程的理論得到了快速發展.Wang等學者在文獻[11-14]中得到了集值微分系統解的存在性結果.Bhaskar及其他學者得到了集值微分系統解的穩定性結果[15-19].然而,Bao在文獻[15]中利用Lyapunov直接方法得到的嚴格穩定性結果在實際應用中有一定的困難,因為Lyapunov函數導數的定號性條件要求較強.本文采用Lyapunov函數和比較原理,在較弱的條件下得到了脈沖交互集值微分系統的嚴格穩定性,發展了文獻[15]中的方法,并克服了其在應用中存在的困難.




[1]LAKSHMIKANTHAM V,LIU X Z.Stability criteria for impulsive differential equations in terms of two measures[J].J Math Anal Appl,1989,137:591-604.
[2]SHEN Jihai.Razumikhin techniques in impulsive functional differential equations[J].Nonlinear Anal,1999,36:119-130.
[3]WANG Peiguang,LIAN Hairong.Stability in terms of two measures of impulsive integro-differential equations via variation of the Lyapunov method[J].Appl Math Comput,2006,177:387-395.
[4]WANG Peiguang,LIU Xia.φ0-Stability of hybrid impulsive dynamic systems on time scales[J].J Math Anal Appl,2007,334:1220-1231.
[5]AHMAD B,SIVASUNDARAM S.Dynamics and stability of impulsive hybrid setvalued integro-differential equations with delay[J].Nonlinear Anal,2006,65:2082-2093.
[6]AHMAD B,SIVASUNDARAM S.Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation[J].Appl Math Comput,2008,197:515-524.
[7]ZHANG Yu,SUN Jitao.Strict stability of impulsive functional differential equations[J].J Math Anal Appl,2005,301:237-248.
[8]LAKSHMIKANTHAM V,LEELA S.Differential and integral inequalities[M].New York:New York Academic Press.1969.
[9]LAKSHMIKANTHAM V,MOHAPATRA R N.Strict stability of differential equations[J].Nonlinear Anal,2001,46:915-921.
[10]LIU Kaien,YANG Guowei.Strict stability criteria for impulsive functional differential systems[J].J Ineq Appl,2008,Aricle ID 243863:1-8.
[11]GALANIS G N,BHASKAR T G,LAKSHMIKANTHAM V,et al.Set valued functions in Frechet spaces:continuity,Hukuhara differentiability and applications to set differential equations[J].Nonlinear Anal,2005,61:559-575.
[12]WANG Peiguang,GAO Wei.Quasilinearization of an initial value problem for a set valued integro-differential equation[J].Compu Math Appl,2011,61:2111-2115.
[13]AHMAD B,SIVASUNDARAM S.The monotone iterative technique for impulsive hybrid set valued integro-differential equations[J].Nonlinear Anal,2006,65:2260-2276.
[14]王培光,高瑋.一階集值微分方程初值問題擬線性化方法[J].河北大學學報:自然科學版,2011,31(1):1-6.
WANG Peiguang,GAO Wei.Quasilinearization of an initial value problem for set differential equations[J].Hebei University:Natural Science Edition,2011,31(1):1-6.
[15]BAO Junyan,ZHOU Caili,GAO Chunxia.Strict stability of impulsive set valued differential equations[J].Anna Diff Equa,2011,27(2):127-131.
[16]PHU N,QUANG L T,TUNG T T.Stability criteria for set control differential equations[J].Nonlinear Anal,2008,69:3715-3721.
[17]TU N N,TUNG T T.Stability of set differential equations and applications[J].Nonlinear Anal,2009,71:1526-1533.
[18]BHASKAR T G,DEVI J V.Stability criteria for set differential equations[J].Math Cop Model,2005,41:1371-1378.
[19]BHASKAR T G,DEVI J V.Set differential systems and vector Lyapunov functions[J].Appl Math Comput,2005,165:539-548.