陳 林 李 卓 謝曉忠 徐 偉
(哈爾濱工程大學 船舶工程學院 哈爾濱150001)
隨著聲納探測技術的不斷進步及人們對船舶航道水下噪聲環境要求的不斷提高,船舶的水下輻射噪聲逐漸成為船舶設計人員和廣大學者關注的焦點,尤其水面艦艇和潛艇,其聲隱身性能更限制海軍裝備的發展。船舶水下輻射噪聲主要有三大類:結構噪聲、螺旋槳噪聲和流噪聲,而船舶結構噪聲特別是中低頻段下結構噪聲作為船舶安靜航速下的主要噪聲源,因此降低船舶中低頻段結構噪聲對艦船的降振減噪具有十分重要的實際意義[1]。
作為振動與噪聲控制的主要方法之一,復合材料減振降噪技術特別適合于寬頻多峰共振響應的控制[2]。夾層板作為一種新型的復合材料結構,一般由上下兩層極薄的面板和中間一個(或多個)較厚的軟夾芯通過粘接、壓制而構成的一種復合結構,目前廣泛應用于船舶結構設計。其主要優點是比強度高、焊縫焊接工作量少、焊接變形小、絕緣性能好、噪聲低等[3-6]。其中V型夾層板是常見的一種艦船結構的設計形式,由于其吸能好、建造工藝簡便、成本較低等優點,許多艦船的重點艙室及主機艙的舷側都采用此種結構形式。目前國內外科研人員對夾層板進行大量研究,得出一些很有價值的結論,但這些研究主要針對結構抗沖擊力學性能,而對結構聲學優化設計的研究并不太多。
鑒于ABAQUS在中低頻段計算流固聲耦合方面具有明顯的優勢,本文采用通用有限元軟件ABAQUS對V型夾層板結構的水下聲輻射性能進行數值模擬分析。首先利用有限元軟件ANSYS建立不同工況下的V型夾層板模型,而后把模型導入到ABAQUS中,并建立流場模型,進而提交求解器進行計算,最后選取典型位置提取輻射聲壓曲線進行分析,并得出相關結論,為V型夾層板的聲學結構優化設計提供依據。
如果從流體力學的三個基本方程(連續性方程,運動方程和狀態方程)出發,那么就可以導出聲波波動方程;如果同時假設由于結構振動在均勻流體介質的無限域中引起的小振幅聲波的聲輻射問題,可以在聲場的參數精確到一階量的意義下用以下方程的定解來描述[7-8]。
波動方程:

Neumann邊值條件:

無窮遠處的Sommerfield輻射條件:

上述方程式中:x是水介質中三維聲場空間的任意一點;c 是聲速,;K為流體的壓縮模量;φ為水中聲場的速度勢函數;t是時間變量;Laplace算子;S是振動結構的邊界表面,內部區域為D-、外部區域為D+;r是聲場空間點 x與振動邊界上一定點距離;v(ξ,t)是振動物體的表面法向振速,通過有限元法計算可以獲得。
V型夾層板架通常由夾芯及上下面板通過激光焊接或膠結而成;夾芯層結構是由平板通過特殊的折疊工藝折疊而成[9],如圖 1、圖 2 所示。

圖1 夾層板模型示意圖

圖2 V型夾層板剖面圖
V型夾層板結構參數尺寸說明如下:
L為夾層板板架的長度,單位:m;
h為夾芯層的高度,單位:m;
tf1為上面板的厚度,單位:m;
tf2為下面板的厚度,單位:m;
tc為夾芯層的壁厚,單位:m;
θ為夾芯結構的張角,單位:°;
a為夾芯結構的單元間距,單位:m。
V型折疊式夾層板是按有規律的線性網格進行局部皺褶而得的立體結構,各參數對一定夾芯層來說并不是相互獨立的,獨立的參數一般為a、θ、tc,其他參數可表示成上述參數函數形式。因此在夾層板概念設計中只需改變其中一個參數,而另外兩個獨立參數保持不變,就可以求出其余參數從而得到夾層板的具體尺寸。
V型夾層板設計基本思路:在保證結構總質量不變而且不明顯影響船艙容積的情況下,將船體結構中的某些重要部位的加筋板架替代為夾層板結構,其中加筋板架中的外板替換成夾層板的上下面板,骨材替換成夾芯層。
本文選取某典型艦船舷側的一個加筋板架,板格大小為2.4 m×3.6 m,帶有六根縱骨,縱骨間距為0.4 m,如圖3所示。

圖3 加筋板架結構(單位:mm)
根據以上思路,設計出幾種V型夾層板結構,下面給出一個典型剖面,單元夾角為60°,如圖4所示。

圖4 60°夾層板結構剖面圖(單位:mm)
本文利用數值的方法對V型夾層板進行聲學優化設計,以便尋找最優結構尺寸。首先按照設計好的夾層板結構尺寸在ANSYS中建模,夾芯層及上下面板均采用二維的板單元模擬,材料為普通船用鋼Q235,屈服極限為235 MPa,楊氏模量E=2.1e11,泊松比μ=0.3,結構損耗因子為η=0.02,然后對建立的模型進行網格劃分,劃分后的夾層板有限元模型如圖5所示;最后通過實驗室自主開發的接口程序將有限元模型導入到ABAQUS中,在ABAQUS中建立結構周圍的流場域,流場半徑為R=6 m,流場外表面建立無反射邊界,與空氣接觸的界面設有空氣阻抗,采用1/3倍頻程,計算頻段為20 Hz~400 Hz,由文獻[10]知:空間步距 Δx 滿足 Δx/λ<1/6 時,離散的網格就能滿足精度的要求,即流體介質中,一個波長范圍內至少應有6個單元[10]。本文流場網格共143 125個,大小均滿足要求。結構與流場有限元模型如圖6所示。

圖5 夾層板有限元模型

圖6 流場有限元模型
按需要擬定以下幾種設計方案:分別改變夾芯層角度θ、單元間距a和夾芯層厚度tc,得到不同形式;然后根據質量相等原則,求出其他參數并得到具體尺寸。參見下頁表1。

表1 夾層板模型尺寸
單元邊長對夾層板振動聲輻射性能的影響如圖7所示。

圖7 單元邊長對夾層板振動聲輻射性能的影響
可以看出,在低頻段(<100 Hz),隨著單元邊長的增加,夾層板結構的水下輻射聲壓也在增加,由此可知夾芯層單元邊長的增加對水下聲輻射產生不利的影響;而在中高頻段,增加單元邊長基本上對夾層板結構的水下聲輻射有所抑制,在某些頻點處最高能降低20 dB左右。主要原因:在質量及其他參數保持不變前提下,邊長的增加導致單元個數減少,那么上下面板之間的連接點減少,其整體剛度將變小。在低頻段,剛度起主要作用,上面板受激振動時,振動通過夾芯層向下面板傳遞,此時夾層板結構的耦合作用明顯,振動加劇。在中高頻段,結構的振動以局部振動為主,而夾芯層與上下面板的連接點變少,所以從上面板傳到下面板的振動將減少,從而降低了結構的聲輻射。
圖8為單元厚度對夾層板振動聲輻射性能的影響。

圖8 單元厚度對夾層板振動聲輻射性能的影響
可以看出,保證質量不變的前提下,改變夾芯層的厚度,對夾層板的水下振動聲輻射有較大影響。圖中4條曲線隨頻率變化的趨勢大體一致,只是在某些共振峰處存在橫向偏移。在低頻時(<130 Hz),隨著夾芯層厚度的增加,其水下輻射聲壓先減小再增加,由此可知在低頻時夾芯層存在一個最優厚度使其輻射聲壓最小。在中高頻段,水下輻射聲壓隨著夾芯層厚度的增加而減小,說明在中高頻段厚度的增加對降低聲輻射起到很大的作用。其原因為在中高頻段結構被激發的模態以局部模態為主,單元厚度的增加使夾芯層剛度變大,而夾芯層與上下面板之間的連接點保持不變,抑制了振動從上面板到下面板的傳遞,所以在中高頻段夾芯層厚度的增加對結構的減振降噪有利。
單元角度對夾層板振動聲輻射性能的影響如圖9所示。

圖9 單元角度對夾層板振動聲輻射性能的影響
可以看出,各單元角度的夾層板隨激勵頻率的增加,其水下輻射聲壓變化趨勢一致,但在某些峰值處波動比較大。在保證質量不變的前提下,單元角度的變化對V型夾層板水下聲輻射影響不大,沒有厚度及邊長變化對結構聲輻射影響那么明顯。在整個頻段,結構的輻射聲壓隨角度的增加先減小后增大,由此可知,存在一個最優夾角使其輻射聲壓最小,其角度大約在 70°~80°。
本文基于通用軟件對V型夾層板結構的水下聲輻射性能進行了數值模擬研究。在保證結構質量不變的前提下,通過對不同參數的V型夾層板結構聲輻射性能進行分析,尋找最優尺寸,得出以下結論:
(1)在低頻段,V型夾層板結構的水下輻射聲壓隨著單元邊長的增加而增加,由此可知單元邊長的增加對夾層板結構的聲學性能不利;而在中高頻段,增加單元邊長基本上對夾層板結構的水下聲輻射有所抑制。
(2)夾芯層厚度的變化對其聲輻射性能影響較大。在低頻段,輻射聲壓隨厚度的增加先減小后增加,說明存在一個厚度使聲學性能最優;在高頻段,輻射聲壓隨厚度的增加而減小。
(3)單元角度的變化對V型夾層板水下聲輻射影響不大,沒有厚度及邊長變化對結構聲輻射影響那么明顯。但從整個頻段來說,存在一個最優夾角使其聲學性能最好。
[1]孫雪榮,朱錫.船舶水下結構噪聲的研究概況與趨勢[J].振動與沖擊,2005,24(1):106-111.
[2]龔靜.復合夾層板結構的聲輻射特性及降噪優化[D].武漢:武漢理工大學,2007.
[3]白兆宏,尹緒超,蘇羅青.四邊形蜂窩夾層板的優化設計分析[J].船舶,2012,23(2):30-34.
[4]王祖華,周海波,計方.典型艦船艙壁結構隔振優化設計[J].船舶,2011,2(1):26-33.
[5]MCSHANE G J,RADFORD D D,DESHPANDE V S,et al.The response of clamped sandwich plates with lattice cores subjected to shock loading[J].European Journal of Mechanics A/Solids,2006,25:215-220.
[6]趙桂平,盧天健.多孔金屬夾層板在沖擊載荷作用下的動態響應[J].力學學報,2008,40(2):194-205.
[7]孫磊.輕外殼對雙層殼體結構水下結構水下輻射聲影響研究[D].哈爾濱:哈爾濱工程大學,2007.
[8]何祚鏞.結構振動與聲輻射[M].哈爾濱:哈爾濱工程大學出版社,2001.
[9]岳燦甫,吳始橋.國外船用激光焊接波紋夾芯板的開發與應用[J].魚類技術,2007,15(4):1-5.
[10]廖振鵬.工程波動理論導引[M].北京:科學出版社,1996.