孫曉祥,楊麗娟
(吉林農(nóng)業(yè)科技學(xué)院 文理學(xué)院,吉林 吉林 132101)

目前,關(guān)于隨機(jī)變量列重對(duì)數(shù)律、完全收斂及矩重對(duì)數(shù)律的精確漸近性質(zhì)已有許多研究結(jié)果[1-8].文獻(xiàn)[9]給出了關(guān)于獨(dú)立和NA列部分和精確漸近性的一般形式,揭示了擬權(quán)函數(shù)、邊界函數(shù)、收斂速度和極限狀態(tài)間的密切聯(lián)系.
本文若無(wú)特別說(shuō)明,均以C表示不同的正常數(shù),N表示標(biāo)準(zhǔn)正態(tài)隨機(jī)變量.
定理1[10]對(duì)于任意的d>0和β>0,
成立的充要條件是
EX=0,EX2=σ2.
(1)
本文對(duì)于普通的擬權(quán)函數(shù)和邊界函數(shù),將上述結(jié)果推廣到如下更一般的形式.
定理2設(shè)0
1)g(x)↑∞,x→∞;

則
(2)
成立的充要條件是式(1)成立.
注1由于在上述級(jí)數(shù)中增加或減少有限項(xiàng)不改變結(jié)果,故為簡(jiǎn)便,以下一律從n=1開(kāi)始記,并假設(shè)g(x)和g′(x)(或ψ(x)等)在[1,∞)上有定義并單調(diào),不影響g(x)的普遍性.
注2滿足定理2條件的g(x)有很多種,如xα,logβx,loglogγx,α>0,β>0,γ>0等,但指數(shù)函數(shù)不在此列.
注3在定理2中,令g(x)=(loglogx)(2β+d)/2,s=d/(2β+d)(其中:β>0;d>0),即可得到文獻(xiàn)[10]的定理1,從而推廣了已有的結(jié)果.

令a(ε)=g-1(Mε-1/s),M為任意正實(shí)數(shù),g-1(x)為g(x)的反函數(shù).
要證明式(1)?式(2),此時(shí)不妨假設(shè)σ=1.
命題1在定理2的條件下,有
證明: 由注1知,可以在[0,1)中對(duì)g(x)作適當(dāng)?shù)难a(bǔ)充定義,使g′(x)保持單調(diào)性.做變量代換t=εgs(y),得
由定理2中條件1)和2),有
事實(shí)上,當(dāng)ψ(x)單調(diào)非增時(shí),式(3)顯然成立;當(dāng)ψ(x)單調(diào)非降時(shí),由定理2中條件2)知,對(duì)?δ>0,存在正整數(shù)κ,使得當(dāng)x>κ時(shí),總有ψ(x)≤(1+δ)ψ(x-1),從而
令δ↓0,即得式(3)中右邊不等式.同理可得式(3)左邊不等式.命題1證畢.
命題2在定理2的條件下,有
(4)

由Δn的定義及Markov不等式知


證明: 注意到定理2中條件2),類似命題1,可得
命題4在定理2的條件下,有
(5)
證明: 由引理1,可得
其中T>1/(2s).
首先考慮K2,注意到01/s>1,
其次考慮K1,為方便不妨假設(shè)T=1,

證畢.
下面證明定理2.由命題1~命題4及三角不等式可證得式(1)?式(2).下面證明式(2)?式(1).
首先證明EX=0.由式(2),對(duì)于任意的ε>0,有




因此EY2≤4σ2.從而令K→∞,有EX2<∞.
最后,同理可證
與式(2)相比較,可得EX2=σ2.
[1] WANG Yue-bao.On Asymptotic for Class of Small Parameters Sequences of B-Valued Dependent Random Variables [J].Acta Math Appl Sinica,1995,18: 344-352.(王岳寶.關(guān)于B-值強(qiáng)平穩(wěn)相依隨機(jī)變量列一類小參數(shù)級(jí)數(shù)的漸近性 [J].應(yīng)用數(shù)學(xué)學(xué)報(bào),1995,18: 344-352.)
[2] Davis J A.Convergence Rates for the Law of the Iterated Logarithm [J].Ann Math Statist,1968,39(5): 1479-1485.
[3] Sp?taru A.Precise Asymptotics in Spitzers Law of Large Numbers [J].J Theoret Probab,1999,12(3): 811-819.
[4] Gut A,Sp?taru A.Precise Asymptotics in the Baum-Katz and Davis Law of Large Numbers [J].J Math Anal Appl,2000,248(1): 233-246.
[5] LIU Wei-dong,LIN Zheng-yan.Precise Asymptotics for a New Kind of Complete Moment Convergence [J].Statist Probab Lett,2006,76(16): 1787-1799.
[6] JIANG Ye,ZHANG Li-xin,PANG Tian-xiao.Precise Rates in the Law of the Logarithm for the Moment Convergence of i.i.d.Random Variables [J].J Math Anal Appl,2007,327(1): 695-714.
[7] ZHANG Yong,YANG Xiao-yun,DONG Zhi-shan.Precise Asymptotics of Law of Iterated Logarithm for Linear Process Generated by Strong Mixing Sequences [J].Journal of Jilin University: Science Edition,2007,45(3): 325-330.(張勇,楊曉云,董志山.由強(qiáng)混合序列生成的線性過(guò)程重對(duì)數(shù)律的精確漸近性質(zhì) [J].吉林大學(xué)學(xué)報(bào): 理學(xué)版,2007,45(3): 325-330.)
[8] LIU Jun,DONG Zhi-shan,ZHANG Yong.A General Result on Precise Asymptotics for the Linear Process Generated by Strong Mixing Sequences [J].Journal of Jilin University: Science Edition,2008,46(4): 595-600.(劉君,董志山,張勇.由強(qiáng)混合序列生成線性過(guò)程精確漸近性的一般形式 [J].吉林大學(xué)學(xué)報(bào): 理學(xué)版,2008,46(4): 595-600.)
[9] CHENG Feng-yang,WANG Yue-bao.Precise Asymptotics of Partial Sums for IID and NA Sequences [J].Acta Math Sinica,2004,47(5): 965-972.(成鳳旸,王岳寶.獨(dú)立與NA列部分和的精致漸近性 [J].數(shù)學(xué)學(xué)報(bào),2004,47(5): 965-972.)
[10] XIAO Xiao-yong,YIN Hong-wei.Precise Asymptotics in the Law of Iterated Logarithm for the First Moment Convergence of i.i.d.Random Variables [J].Stat Probab Lett,2012,82(8): 1590-1596.
[11] Vladimir R.Proability Theory [M].Singapore: World Scientific,1997.
[12] Hall P,Heyde C C.Martingale Limit Theory and Its Application [M].New York: Academic Press,1980.
[13] Baum L E,Katz M.Convergence Rates in the Law of Large Numbers [J].Trans Amer Math Soc,1965,120(1): 108-123.