楊孝英, 王旖旎
(長春工業大學 基礎科學學院, 長春 130012)
自從Bérenger[1]提出解電磁散射問題的PML方法以來, 已構造了許多不同的PML方法[2-4]. 文獻[5-6]用PML方法求解了洞穴散射問題, 但在實際計算中, 若PML的厚度過大, 則用有限元計算需要大量的剖分節點, 從而導致數值計算耗費內存和計算時間. 因此PML參量的確定是實際計算的關鍵. 本文提出一種帶小參數的PML, 并證明了如此構造的PML吸收效果較好.
考慮散射問題:
(1)

a(u,ψ)=(g,ψ)ΓD, ?ψ∈H1(ΩR),
(2)
其中: (·,·)表示L2內積;
(3)
算子T:H1/2(ΓR) →H-1/2(ΓR)定義為
?f∈H1/2(ΓR).
(4)
則問題(2)的解存在唯一[8].
針對上述問題, Chen等[7]給出了圓形PML區域的自適應有限元方法; Bermúdez等[9]針對方形PML區域給出了解散射問題的一種優化PML方法, 即選取PML介質參量為在PML廣義積分無界的函數, 這樣選取的參量能保證PML計算與PML的厚度無關, 從而節省了計算量. 但文獻[9]選取的介質參量函數使PML方程的系數產生奇異, 因此導致數值分析及截斷PML問題的收斂性分析存在困難, 并且在數值計算中, 邊界層附近的PML解出現不穩定現象.

圖1 優化PML的幾何構造Fig.1 Geometric structure of optimal PML
本文基于文獻[7,9], 針對圓形PML區域提出一種新的PML介質參量構造方法. 如圖1所示, 在區域ΩPML={x∈R2:R (5) 其中:ε0為足夠小的正數;m≥2. 令 (6) (7) (8) 證明: 由式(8), 有 由于 故 其中δ為PML的厚度. 證畢. (9) 例2考慮金屬凹槽的散射問題. 入射平面波為ui=eikx, 在其邊界上散射場u=-ui. 圖3為δ=1,2,0.5,ε0=0.01,0.005,0.001時PML解的實部曲線. 由圖3可見, 優化的PML方法對于解金屬凹槽散射問題有效. [1] Bérenger J P. Perfectly Matched Layer (PML) for Computational Electromagnetics [M]. [S.l.]: Morgan & Claypool Publishers, 2007. [2] CHEN Zhi-ming. Convergenc of the Time-Domain Perfectly Matched Layer Method for Acoustic Scattering Problems [J]. Inter J Numer Anal Mode, 2009, 6(1): 124-146. [3] LIU Juan, MA Fu-ming. A PML Method for Electromagnetic Scattering from Two-Dimensional Overfilled Cavities [J]. Communications in Mathematical Research, 2009, 25(1): 51-66. [4] YANG Xiao-ying, MA Fu-ming, DU Xin-wei. A Uniaxial Optimal Perfectly Matched Layer Method for Time-Harmonic Scattering Problems [J]. Communications in Mathematical Research, 2010, 26(3): 255-268. [5] ZHANG De-yue, MA Fu-ming, FANG Ming. Finite Element Method with Perfectly Matched Absorbing Layers for Wave Scattering from a Cavity [J]. Chinese Journal of Computational Physics, 2008, 25(3): 301-308. [6] YANG Xiao-ying, MA Fu-ming, DU Xin-wei. An Optimal PML Method for Electromagnetic Scattering from Cavities [J]. Journal of Jilin University: Science Edition, 2009, 47(2): 185-190. (楊孝英, 馬富明, 杜新偉. 計算開洞穴電磁散射問題的一種優化PML方法 [J]. 吉林大學學報: 理學版, 2009, 47(2): 185-190.) [7] CHEN Zhi-ming, LIU Xue-zhe. An Adaptive Perfectly Matched Layer Technique for Time-Harmonic Scattering Problems [J]. SIAM J Numer Anal, 2005, 43(2): 645-671. [8] Colton D L, Kress R. Integral Equation Methods in Scattering Theory [M]. New York: John Wiley and Sons, 1983. [9] Bermúdez A, Hervella-Nieto L, Prieto A, et al. An Optimal Perfectly Matched Layer with Unbound Absorbing Function for Time-Harmonic Acoustic Scattering Problems [J]. J Comput Phys, 2007, 223(2): 469-488.





2 數值實例

