999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

五風藤的化學成分研究

2013-12-23 05:27:06李國友方冬梅黃田鈁張國林陳曉珍
天然產物研究與開發 2013年10期
關鍵詞:生物

顧 健,李國友,楊 濤,方冬梅,黃田鈁 ,張國林,陳曉珍

中國科學院成都生物研究所,成都 610041

Holboellia latifolia,a medicinal herb,is mainly distributed in China,Nepal,Bhutan and India[1]. This genus,substituted for traditional Chinese medicine,bayuegua,has the effiency of clearing away heat-evil and diuretic,soothing the liver,regulating qi and promoting blood flow to smooth menstruation. It's reported that the hederagenin with a glucose moiety has been isolated from the stems of H. Latifolia[2]. In biologic screening,n-BuOH-resolvable fraction from the EtOH(95%)extract exhibited cytotoxic activity in vitro. In this study on the chemical constituents of H.Latifolia,twelve compounds were isolated from the aqueous ethanolic extract of the plant. They were elucidated to be lup-20(29)-en-3-one (1),lupeol (2),β-sitosterol(3),oleanolic acid(4),ursolic acid (5),β-daucosterol (6),Eleutheroside K (7),hederagenin3-O-α-L-rhamnopyranosyl-(1 →2)-α-L-arabinopyranoside (8)2-(naphthalen-1-yl)acetic acid (9),3-O-α-L-rhamnopyranosyl-(1 →2)-[β-D-glucopyranosyl-(1 →3)]-α-L-arabinopyranosy1 oleanolic acid 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-Dglucopyranosyl ester (10),3-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranosyl oleanolic acid (11),3-O-(β-D-glucopyranosiduronic acid)-oleanolic acid 28-O-β-D-glucopyranosyl ester (12),on the basis of spectral evidence or comparison with authentic samples.

Experimental

Plant material

The aerial part of H.latifolia was collected in Yanbian of Sichuan Province in May 2004 and identified by Prof.Fadin Fu in Chengdu Institute of Biology,the Chinese Academy of Sciences (CAS). A voucher specimen (A-176)was deposited at the Herbarium of Chengdu Institute of Biology,CAS.

General

Melting points were determined on an X-6 precise melting point apparatus (Beijing Fukai Science and Technology Development,Beijing,China)and were uncorrected.UV and IR spectra were obtained on a Perkin-Elmer Lambda 35 US/vis spectrometer and a Perkin-Elmer FT-IR spectrometer (KBr disk),respectively.Optical rotations were measured on a Perkin-Elmer 341 automatic polarimeter.Mass spectra were obtained on a Finnigan-LCQDECAmass spectrometer (Thermoquest LC/MS Division,San Jose,CA,USA;ESI-MS). NMR spectra were recorded on a Bruker Advance 600 MHz spectrometer with TMS as internal standard. Silica gel(160-200 and 200-300 mesh,Qingdao Haiyang Chemical Co.,Ltd.)and RP-C18(40-63 μm,Merck KGaA,Darmstadt,Germany)were used for column chromatography (CC).MCI gel (CHP 20P,75-150 μm;Mitsubishi Chemical Industries,Tokyo,Japan)and macroporous resin (D101,pore size 13-14 nm,26-60mesh)was obtained from Tianjin Haiguang Chemical Co.,Ltd.,respectively. All solvents were distilled prior to use. Precoated plates (silica gel GF254,10-40 μm,Qingdao Haiyang Chemical Co.,Ltd.),activated at 110 °C for 2 h,were used for TLC. All solvents were distilled prior to use.

Extraction and Isolation

The air-dried and powdered plant (5. 2 Kg)was soaked with 95% EtOH (20 L ×3,each 10 days)at room temperature.The combined extract was evaporated under reduced pressure to give 344 g residue,which was suspended in H2O (1.5 L)and portioned successively with petroleum ether (1.5 L ×2),EtOAc (1.5 L×5)and n-BuOH (1.5 L×6)to give corresponding fractions A (2.3 g),B (42.5 g)and C (164.7 g).Fraction B(42.5 g)was subjected to CC over silica gel on silica gel (1.5 kg,ф 8 ×45 cm)eluted with petroleum ether-acetone (20∶1,5∶1,1∶1,each 5.0 L)to afford nine subfractions B1-B9.B2 (1.4 g)was separated by CC over silica gel (60 g;petroleum ether-acetone,15∶1,2.5 L,ф 2.5 ×18 cm)to give 1 (40 mg).B5 (7.5 g)was separated by CC over silica gel (330 g;petroleum ether-acetone,15 ∶1,500 mL;5:1,280 mL,ф 3 ×15 cm)to give 2 (115 mg)and 3 (68 mg).4 (36 mg)and 5 (4 mg)were obtained from B8(5.1 g)separated by CC on silica gel (180 g,ф3.5 cm × L27 cm )eluted with petroleum ether-acetone(13:1,850 mL).6 was precipitated from B9 (3.4 g),Fraction C was subjected to a macroporous resin column (D101,ф 10 × L 60 cm)to remove sugar by H2O and eluted with EtOH-H2O (30%,5 L;60%,4.6 L,95%,3L)to afford three subfractions C1 (51.2 g),C2 (9.4 g)and C3 (30.1 g).

Fraction C1 was subjected to CC on silica gel (1.0 kg,ф7.0 × 50 cm)eluted with CHCl3-CH3OH (10:1,5:1,each 5.0 L)to give four fractions C1A-C1D.C1B(5.6 g)was separated by CC over silica gel (400 g,CHCl3-CH3OH,10∶1,2 L;ф5 ×20 cm)to give 7 (2.1 g). C1C (11.6g)was separated by CC over silica gel (500 g,CHCl3-CH3OH,8∶1,2 L;ф6 ×22 cm)to give 8 (28 mg).

Fraction C2 was subjected to CC on silica gel (500 g,ф 5 × 20 cm)eluted with CHCl3-CH3OH (5∶1,3.5 L)to give 9 (22 mg).

Fraction C3 was resolved in methanol (350 mL)and acetone (500 mL)was added to yield precipitation(8.4 g). The precipitation was separated by CC over silica gel (360 g,CHCl3-CH3OH,6∶1,1.4 L;ф5 ×25 cm)to afford two subfractions C3A (4.2 g)and C3B(2.6 g).10 (225 mg)was obtained from C3A separated by CC on RP-C18(180 g,ф3.5cm ×L25cm )eluted with CH3OH-H2O (4∶6,1.2 L).C3B was subjected to CC on RP-C18(80 g,ф3 × 20 cm)eluted with CH3OH-H2O (3∶7,600 mL)to give 11 (5 mg)and 12 (12mg).

Bioassay

Cancer cell lines Bre-04 (MDA-MB-231),Lu-04(NCIH460),and N-04 (SF-268)were obtained from the American Type Culture Collection (ATCC)and cultured according to the supplier's instruction. The cells were seeded into 96-well plates,incubated for 16 h at 37 °C,and treated with compounds 1,3,and 4 at different concentrations for 48 h. Taxol was used as a positive control.The cytotoxic activities were examined by means of a colorimetric chemosentivity assay with SRB (sulforodhamine B). The GI50 value (the drug concentration required to inhibit the cell growth by 50%)was used as a parameter for cytotoxicity[3,4].

Structure identification

Oleanolic acid (4) Colourless needles (CH3Cl),m.p. >280 ℃,ESIMS (negative mode)m/z:455.2[M-H]-,1H NMR (600 MHz,CDCl3)δ:5. 20(1H,m,H-12),3.10(1H,m,H-3),1.04(3H,s,H-27),0.88(3H,s,H-23),0.83(3H,s,H-24),0.80(6H,s,H-29,30),0.68(3H,s,H-26),0.67(3H,s,H-25)。1H NMR data were consistent with those reported[12].

Ursolic acid (5) White powder (CH3Cl),mp. >280 ℃;ESIMS (positive mode)m/z:495[M +K]+;IRνmaxcm-1:3432,2927,2871,1692,1457,1388,1377,1285,1187,1029;1H NMR (600 MHz,C5D5N)δ:5.51(1H,m,H-12),3.48(1H,dd,J =10.2,5.6 Hz,H-3),2.65(1H,d,J =11.4 Hz,H-18),2.34(1H,td,J=13.5,4.5 Hz,H-2a),2.14(1H,td,J =13.5,4.5 Hz,H-2b),1.26(3H,s,H-27),1.24(3H,s,H-23),1.07(3H,s,H-25),1.04(3H,s,H-24),1.02(3H,d,J=6.4 Hz,H-29),0.97(3H,d,J =6.2 Hz,H-30),0.90(3H,s,H-26)。1H NMR data were consistent with those reported[13].

3-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1 →2)-α-L-arabinopyranosyl oleanolic acid (11) White powder(MeOH)mp.239.2-242.6℃,[α]25D= -3.9o(c 0.60,CH3OH);ESIMS (positive mode)m/z:919[M+Na]+,925[M+K]+;1H NMR(C5D5N)δ:6.25 (1H,s,rha-h-1),5.48 (1H,s,H-12),5.15 (1H,d,J = 7.7 Hz,glc-H-1),4.88 (1H,d,J = 5.0 Hz,ara-H-1),1.29 (3H,s,H-27),1.24(3H,s,H-23),1.23 (3H,s,H-24),1.14 (3H,s,H-30),0.99 (3H,s,H-29),0.94 (3H,s,H-26),0.82(3H,s,H-25);13C NMR (C5D5N)data were given in Table 2 and Table 3. The optical rotation and NMR data were in accordance with those reported[10].

3-O-(β-D-glucopyranosiduronic acid )-oleanolic acid 28-O-β-D-glucopyranosyl ester (12) White powder (MeOH),m. p.218.7-220.4 ℃;[α]25D= +15.9°(c 0.10,MeOH);ESIMS (positive mode)m/z:817[M + Na]+;833 [M + Na]+;IRνmaxcm-1:3435,2945,1742,1620,1388,1161,1077,1030;1H NMR (C5D6N)δ:6.28 (1H,d,J = 7.2 Hz,glc-H-1),5.40 (1H,s,H-12),5.11 (1H,J = 7.2 Hz,glu-H-1),3.27 (1H,d,J = 9.6 Hz,H-18),3.16 (1H,d,J = 10.8 Hz,H-3),1.25 (3H,s,H-27),1.24(3H,s,H-23),1.05 (3H,s,H-24),0.93 (3H,s,H-30),0.91 (3H,s,H-29),0.87 (3H,s,H-26),0.80(3H,s,H-25).13C NMR (C5D5N)data were given in Table 2 and Table 3. The optical rotation and NMR data were in accordance with those reported[11,12].

Compounds 2,3,6 and 9 were identified as lupeol,βsitosterol,oleanolic acid,2-(naphthalen-1-yl)acetic acid by TLC,m. p. and comparing them with authentic samples.

Table 113C NMR Chemical shifts of aglycone moieties(C5D5N)

619.419.020.118.418.5 734.133.734.033.032.5 840.640.640.539.539.9 948.949.149.047.848.0 1037.937.838.036.836.9 1124.624.724.723.523.7 12123.4123.5123.8123.6122.9 13145.7145.7145.0144.6144.1 1443.142.843.041.942.1 1529.229.229.028.128.3 1624.624.624.623.723.6 1747.647.547.946.747.0 1842.943.042.641.541.7 1947.447.347.146.246.2 2031.931.831.730.730.8 2135.135.134.934.034.0 2234.134.133.433.033.2 2329.064.829.227.828.3 2417.914.917.916.817.0 2516.417.016.615.315.6 2618.318.318.417.117.5 2727.127.027.025.926.1 28181.1181.1177.4180.1176.5 2934.234.133.132.933.2 3024.724.724.323.423.8

Table 213C NMR Chemical shifts of sugar moieties(C5D5N)

79.078.078.2 4 74.971.273.6 5 79.778.476.4 6 63.462.3 171.0 28-O sugur Inner Glc-196.695.7 2 74.774.0 3 79.179.3 4 70.171.1 5 76.378.8 6 71.062.2 Outer Glc-1105.8 2 75.6 3 77.4 4 79.2 5 78.0 6 62.1 Rha-1103.7 2 73.4 3 73.7 4 70.9 5 71.2 3 6 19.4

Results and Discussion

Main constituents of the plant are triterpenes and triterpenoid saponins that possess many vital bioactivities.In biologic screening,7 showed moderate cytotoxicity against Lu06,N04 and Bre04.8 showed moderate cytotoxicity against N04.In view of their structures,7 with 23-CH3was different from 8 bearing CH2OH at 23.

Table 3 Cytotoxic activity of 7 and 8(GI50,μg/mL)

1 Institute of Botany,Chinese Academy of Sciences.Flora Reipublicae Popularis Sinicae,Vol 29. Beijing:Science Press,1984.20.

2 Mitra AK,Karrer P.Holboellia latifolia,a new source of hederagenin,Helv Chim Acta,1953,36:1401.

3 Skehan P,Storing R,Scudiero D,et al. J Natl Cancer Inst,1990,82:1107-1112.

4 Rubinstein LV,Shoemaker R. H,Paul KD,et al. J Natl Cancer Inst,1990,82:1113-1118.

5 Shiojima K,Masuda K,Suzuki H,et al. Composite constituents:forty-two triterpenoids including eight novel compounds isolated from Pocris hicracioides subsp,japonica.Chem pharm bull,1995,43:1634-1639.

6 Maillard M,Adewunmi C O,Hostettman K.A triterpene glycoside from the fruits of Tetrapleura tetraptera. Phytochem,1992,31:1321-1323.

7 Zhao H,Wang BZ,Ma BR,et al. The chemical constituents of the stem of Actinidia arguta(Sieb. et Zucc.)Planck,ex Miquel.Chin Pharm J,1994,29:523-524.

8 Lu JC,Xu BB,Zhang XY,et al.Study on chemical constituents of rhizome of Anemone raddeana.Yaoxue Xuebao,2002,37:709-712.

9 Cioffi G,Braca A,Autore G,et al. Cytotoxic saponins from Schefflera fagueti.Planta Med,2003,69:750-756 .

10 Shao CJ,Kasa R,Xu JD,et al.Saponins from Roots of Kalopanax septemlobus (Thunb.)Koidz.,Ciqiu:Stuctures of Kalopanaxsaponins C,D,E and F.Chem Pharm Bull,1989,37:311-314.

11 Wang XJ,Zhu LJ.Studies on the saponin constituents of Niu Qi (Achyrathes bidentata). J Fourth Milit Med Univ,1996,17:427-430.

12 Woldemichael GM,Wink M.Identification and biological activities of triterpenoid saponins of Chenopodium quinoa.J Agric Food Chem,2001,49:2327-2332.

猜你喜歡
生物
生物多樣性
天天愛科學(2022年9期)2022-09-15 01:12:54
生物多樣性
天天愛科學(2022年4期)2022-05-23 12:41:48
上上生物
當代水產(2022年3期)2022-04-26 14:26:56
發現不明生物
科學大眾(2021年9期)2021-07-16 07:02:54
史上“最黑暗”的生物
軍事文摘(2020年20期)2020-11-28 11:42:50
第12話 完美生物
航空世界(2020年10期)2020-01-19 14:36:20
最初的生物
自然生物被直銷
清晨生物初歷直銷
生物的多樣性
主站蜘蛛池模板: 欧美精品1区| 国产91视频观看| 亚洲国产午夜精华无码福利| 精品国产Av电影无码久久久| 激情無極限的亚洲一区免费| 性色生活片在线观看| 免费Aⅴ片在线观看蜜芽Tⅴ| 国产一区成人| 波多野结衣视频网站| 97se亚洲综合在线| 在线播放精品一区二区啪视频| 亚洲av片在线免费观看| 欧美成人区| 99青青青精品视频在线| 国产精品网址在线观看你懂的| 波多野结衣国产精品| 亚洲一级色| 久久久久人妻一区精品色奶水| 国产精品亚洲欧美日韩久久| 久久国语对白| 99热国产这里只有精品9九| 色国产视频| 毛片最新网址| 99ri精品视频在线观看播放| 久草视频中文| 亚洲国产在一区二区三区| 成人福利一区二区视频在线| 一区二区日韩国产精久久| 99视频精品在线观看| 激情乱人伦| 在线另类稀缺国产呦| 日韩a级片视频| 国产特一级毛片| 54pao国产成人免费视频| 在线观看亚洲成人| 日韩黄色在线| 四虎亚洲国产成人久久精品| 欧美成人区| 一区二区三区四区精品视频| 亚洲浓毛av| 亚洲国产成人久久77| www精品久久| 无码视频国产精品一区二区| 992tv国产人成在线观看| 天天激情综合| 日韩高清成人| 国产精品久久久久久久久久久久| 欧亚日韩Av| 一本大道视频精品人妻 | 色综合天天综合中文网| 日韩精品欧美国产在线| 国产成本人片免费a∨短片| 亚洲一区第一页| 中文成人在线| 国产第一页第二页| 一区二区偷拍美女撒尿视频| 在线观看亚洲人成网站| 99精品欧美一区| 国产传媒一区二区三区四区五区| 成人午夜精品一级毛片| 欧美午夜网| 国产真实乱子伦视频播放| 精品国产免费观看一区| jizz国产视频| 亚洲成人www| 欧美色视频在线| 国产黄色视频综合| jizz亚洲高清在线观看| 她的性爱视频| 手机在线国产精品| 亚洲无码精彩视频在线观看| 亚洲福利视频一区二区| 久久无码av三级| 国产精品99在线观看| 国产女人在线观看| 亚洲视频免费在线| 亚洲无码免费黄色网址| 免费无码AV片在线观看国产| 亚洲成A人V欧美综合天堂| 精品无码一区二区三区电影| 久久精品无码专区免费| 国产男女XX00免费观看|