劉國清,張 玲
(大慶師范學院數學科學學院,黑龍江大慶 163712)
半線性隨機變延遲微分方程數值解的收斂性
劉國清,張 玲
(大慶師范學院數學科學學院,黑龍江大慶 163712)

隨機變延遲微分方程;指數Euler方法;Lipschitz條件;It?公式;強收斂性
隨機模型在生物學、傳染病、經濟與金融等領域應用廣泛.大多數隨機微分方程都是非線性的,其解析解不能表達為顯式形式,因此,數值解的研究在實際應用中非常重要.隨機微分方程數值解的研究目前已有許多成果[1-5],Higham等[3]給出了隨機微分方程數值解的幾乎處處與矩指數穩定性.文獻[6-11]研究了隨機延遲微分方程.曹婉蓉等[6]給出了隨機延遲微分方程Euler-Maruyama方法的均方穩定性;毛學榮[11]討論了隨機延遲微分方程Euler-Maruyama方法的指數穩定性.對于半線性隨機延遲微分方程指數Euler方法的收斂性和穩定性研究目前報道較少.文獻[6-7]首先把指數Euler方法應用到隨機微分方程上;文獻[12]給出了隨機微分方程指數Euler方法的穩定性和收斂性;文獻[13]應用Lyapunov方法給出了常延遲隨機微分方程指數Euler方法的收斂性和穩定性;文獻[14]用直接證明方法給出了兩類隨機延遲微分方程指數Euler方法的收斂性和指數穩定性.本文給出該隨機變延遲微分方程的指數Euler方法,得到了其數值解的收斂性.


引理1如果線性增長條件(H2)成立,則存在常數C1>0,使得方程(1)的精確解和連續指數Euler方法的近似解(5)滿足如下關系:








表1 指數Euler方法數值解的全局誤差Table 1 Global error of numerrical solutions by the exponential Euler method
[1] Friedman A.Stochastic Differential Equations and Applications[M].New York:Academic Press,1975.
[2] Higham D J.An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations[J].SIAM Review,2001,43(3):525-546.
[3] Higham D J,MAO Xuerong,YUAN Chenggui.Almost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations[J].SIAM J Numer Anal,2007,45(2):592-609.
[4] MAO Xuerong.Stochatic Differential Equations and Applications[M].Chichester:Horwood Publishing,1997.
[5] MAO Xuerong,YUAN Chenggui.Stochastic Differential Equations with Markovian Switching[M].London:Imperial College Press,2006.
[6] CAO Wanrong,LIU Mingzhu,FAN Zhencheng.MS-Stability of the Euler-Maruyama Method for Stochastic Differential Delay Equations[J].Appl Math Comput,2004,159(1):127-135.
[7] 范振成,劉明珠.隨機延遲微分方程數值解的p階均方指數穩定[J].黑龍江大學自然科學學報,2005,22(4):468-470.(FAN Zhencheng,LIU Mingzhu.Thepth Moment Exponential Stability for the Stochastic Delay Differential Equation[J].Journal of Natural Science of Heilongjiang University,2005,22(4):468-470.)
[8] MAO Xuerong.Numerical Solutions of Stochastic Differential Delay Equations under the Generalized Khasminskii-Type Conditions[J].App Math Comput,2011,217(12):5512-5524.
[9] MAO Xuerong.Numerical Solutions of Stochastic Functional Differential Equations[J].LMS J Comput Math,2003,6:141-161.
[10] MAO Xuerong,Sabanis S.Numerical Solutions of Stochastic Differential Delay Equations under Local Lipschitz Condition[J].J Comput Appl Math,2003,151(1):215-227.
[11] MAO Xuerong.Exponential Stability of Equidistant Euler-Maruyama Approximations of Stochastic Differential Delay Equations[J].J Comput Appl Math,2007,200(1):297-316.
[12] 史春妹.隨機微分方程指數Euler方法收斂性和穩定性[D].哈爾濱:哈爾濱工業大學,2011.(SHI Chunmei.The Convergence and Stability of Exponential Euler Method for Stochastic Differential Equations[D].Harbin:Harbin Institute of Technology,2011.)
[13] 周雪.隨機延遲微分方程指數Euler法的收斂性和穩定性[D].哈爾濱:哈爾濱工業大學,2012.(ZHOU Xue.Convergence and Stability of Exponential Euler Method for Stochastic Delay Differential Equations[D].Harbin:Harbin Institute of Technology,2012.)
[14] 張玲.幾類隨機延遲微分方程的數值分析[D].哈爾濱:哈爾濱工業大學,2013.(ZHANG Ling.Numerical Analysis for Several Classes of Stochastic Delay Differential Equations[D].Harbin:Harbin Institute of Technology,2013.)
Convergence of Numerical Solutions for Semi-linear Stochastic Variable Delay Differential Equations
LIU Guoqing,ZHANG Ling
(SchoolofMathematicalSciences,DaqingNormalUniversity,Daqing163712,HeilongjiangProvince,China)

stochastic variable delay differential equation;exponential Euler method;Lipschitz condition;It?formula;strong convergence
O241.81
A
1671-5489(2014)03-0451-09
10.13413/j.cnki.jdxblxb.2014.03.09
2013-11-22.
劉國清(1966—),男,漢族,碩士,教授,從事拓撲動力系統的研究,E-mail:lgq660609@163.com.通信作者:張 玲(1978—),女,漢族,博士,講師,從事微分方程數值解和隨機過程的研究,E-mail:zl78521@163.com.
黑龍江省教育廳科研項目(批準號:11553003).
趙立芹)