999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Biharmonic Spacelike Submanifolds in Lorentzian Product Space n(c)× R1

2014-03-19 09:33:14LIUJianchengSUAnle
關鍵詞:數學

LIU Jiancheng, SU Anle

(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu)

for any compact subsetΩofM. Using the first variational formula (due to G. Y. Jiang, see [2]) one sees thatφis a biharmonic map if and only if its bitension field vanishes identically, i.e.

τ2(φ):=△φτ(φ)-

(1)

It is well known fromτ(φ)=mHthat an isometric immersion is minimal (|H|=0) if and only if it is harmonic (τ(φ)=0). So a minimal submanifold is trivially biharmonic, and we call a nonharmonic biharmonic submanifold a proper biharmonic submanifold.

The study of proper biharmonic submanifolds is nowadays becoming a very active subject and its popularity was initiated with the challenging conjecture of B. Y. Chen[3]: Any biharmonic submanifold in the Euclidean space is minimal. Due to some nonexistence results (see [4-5]) the Chen conjecture was generalized to (see [6]): Any biharmonic submanifold in a Riemannian manifold with non-positive sectional curvature is minimal. A. Balmus, S. Montaldo, C. Oniciuc, R. Caddeo and E. Loubeau et al. had studied the biharmonic submanifolds in many general aspects, and got some classification results (see [7-9] and the references therein).

Another class of interesting pseudo-Riemannian manifolds is that of Lorentzian product manifoldsn(c)×R1, withn(c) ann-dimensional Riemannian manifold with constant sectional curvaturecandR1one-dimensional pseudo-Riemannian space with a metric -dt2. These spaces play an important role in the general relativity, see, for example, [12-14].

This paper studies biharmonic spacelike submanifolds in Lorentzian product manifoldsn(c)×R1. We first prove an invariant biharmonic equation in Section 2 for such submanifolds in general pseudo-Riemannian manifolds (see Theorem 1). Then we apply it to Lorentzian product manifoldsn(c)×R1, and obtain a key Theorem (see Theorem 2), which gives a sufficient and necessary condition for spacelike submanifolds with parallel mean curvature vector fields to be a biharmonic ones. As a result, we prove some nonexistence theorems for proper biharmonic spacelike submanifolds or hypersurfaces (see Corollaries 4, 5). These all corollaries can be viewed as the dual of their Riemannian version.

1 Preliminaries

In this section, we recall some basic notations and facts concerning Lorentzian product space, tension field of an isometric immersion, that will appear along the paper.

From now on, we consider a special Lorentzian product spacen(c)×R1, withn(c) be ann-dimensional Riemannian manifold with constant sectional curvaturec. For simplicity, we just writen(c)×R1. For anm-dimensional immersed submanifoldΣminif the induced metric viaφonΣmis positive definite, then we callΣma spacelike submanifold ofSet

?t=T+N,

(2)

〈π*X,π*Z〉〈π*Y,π*W〉}=

c{〈Y,Z〉〈X,W〉+〈Y,?t〉〈?t,Z〉〈X,W〉+

〈Y,Z〉〈X,?t〉〈?t,W〉-〈X,Z〉〈Y,W〉-

〈X,?t〉〈?t,Z〉〈Y,W〉-〈X,Z〉〈Y,?t〉〈?t,W〉}.

Therefore, we obtain

〈Y,?t〉〈?t,Z〉X+〈Y,Z〉〈X,?t〉?t-

〈X,?t〉〈?t,Z〉Y-〈X,Z〉〈Y,?t〉?t}.

(3)

⊕νΣm.

(4)

dφ(XY)=B(X,Y),

(5)

(6)

2 Main results and its proofs

(7)

whereAdenotes the shape operator,Bthe second fundamental form,Hthe mean curvature vector field, and⊥, △⊥the normal connection and the Laplacian on the normal bundle ofΣminrepectively.

(8)

Also

△⊥H-TrA(·)-

TrB(·,AH·)-Tr(·)AH(·).

(9)

Tr(·)AH(·)=

(10)

Meanwhile

Substituting (11) into (10), we have

which, together with (9), yields that

△φH=△⊥H-2TrA(·)-

(12)

Finally, putting (12) into (8) and collecting all the tangent and normal parts of the bitension field separately, we complete the proof of Theorem 1.

Remark1Except the squared norm |H|2of the mean curvature vector fieldHis a minus one whenHis timelike, the biharmonic equation (7) coincides with that in Riemannian case formally (cf. Theorem 2.1 of [7]). Using moving frame method, Ouyang also obtained a local biharmonic equation for spacelike submanifolds in pesudo-Riemannian manifolds, we refer readers to Proposition 3.1 of [10].

Theorem2A PMC spacelike submanifoldΣm,m≥2, in Lorentz product spacen(c)×R1is biharmonic if and only if

Moreover, the mean curvature vector fieldHmust be spacelike ones.

ProofFrom (3) we know

(m+|T|2)H-m〈H,?t〉N}.

Putting into (7), we get

(13)

SinceΣmis a PMC spacelike submanifold, (13) becomes

(14)

for anyX,Y∈Γ(TΣm). Thus 〈H,?t〉=0 onΣm. It is a contradiction.

Now, we proveH⊥?tfrom the second equation of (14). Suppose on the contrary that there exists a pointp∈Σmsuch that 〈H,?t〉(p)≠0, and then 〈H,?t〉≠0 on a neighborhood(p) ofp, soT|=0. This fact together with (2) leads to 〈X,?t〉=0 on(p) for any vector fieldX∈Γ(TΣm). On the other hand, because ofwe get

for anyX,Y∈Γ(TΣm). Thus 〈H,?t〉=0 on the neighborhood(p), which is a contradiction. Consequently, we haveH⊥?teverywhere onΣm.

According to the conclusionH⊥?t, the first equation of (14) reduces to

TrB(·,AH·)=c(m+|T|2)H.

Thus, we obtain

which completes the proof of Theorem 2.

In the following, by using Theorem 2, we shall prove that the tangent part of ?thas constant length for a proper biharmonic PMC spacelike surface. Also, we shall derive a condition for PMC biharmonic spacelike submanifolds to be the maximal ones and prove a nonexistence result for biharmonic hypersurfaces.

LetΣ2be a biharmonic PMC spacelike surface inn(c)×R1. According to [15], we note that the mapp∈Σ2→(AH-μI)(p), whereμa constant, is analytic and, therefore, eitherΣ2is a pseudo-umbilical surface (at every point), orH(p) is not an umbilical direction for any pointp, orH(p) is an umbilical direction on a closed set without interior points. We denote byWthe set of points whereHis not an umbilical direction. In the second case,Wcoincides withΣ2, and in the third one,Wis an open dense set inΣ2.

Corollary3IfΣ2is a proper biharmonic PMC spacelike surface inn(c)×R1, then the tangent partTof ?thas constant length.

ProofIt follows from Theorem 2 that 〈H,?t〉=0, which implies

for any tangent vector fieldX, thenAHT=0.

If the surface is pseudo-umbilical, i.e.,AH-|H|2I=0, then we have 0=AHT=|H|2T, i.e.,T=0.

Now, assume thatΣ2is non-pseudo-umbilical, and we shall work onWdefined above. Taking similar observation as done in Lemma 1 of [19], at any point inW, there exists a local orthonormal frame field that diagonalizesAUfor any normal vector fieldUdefined onW. So we can consider {E1,E2} an orthonormal basis at an arbitrary pointp∈Wthat diagonalizesAHandAN. It follows from Theorem 2 thatH⊥?tand |AH|2=c(2+|T|2)|H|2, furthermore,H⊥N. Hence we have TrAN=2〈H,N〉=0. The matrices ofAHandANwith repect to {E1,E2} are

Moreover

Corollary4Suppose thatΣmbe a PMC biharmonic spacelike submanifold inn(c)×R1. Ifc≤0 or ‖B‖2<(m+|T|2)c, then |H|=0, i.e.Σmis a maximal.

ProofSinceΣmbe a PMC biharmonic spacelike submanifold, we know from Theorem 2 that

|AH|2=c(m+|T|2)|H|2.

(15)

Whenc<0 and by Theorem 2, 〈H,?t〉=0.His a spacelike vector field, the right hand side of (15) is non-positive, the conclusion is obvious.

Moreover, we get

(m+|T|2)c≤‖B‖2<(m+|T|2)c,

i.e., (m+|T|2)c<(m+|T|2)c, which is a contradiction. Consequently, |H|=0, and we end the proof of Corollary 4.

Corollary5There exist no nonminimal biharmonic spacelike hypersurfaces with constant mean curvature inn(c)×R1.

ProofFor a biharmonic spacelike submanifold inn(c)×R1with constant mean curvature, Theorem 2 tells us that its mean curvature vectorHis a spacelike one, so Corollary 5 follows immediately.

致謝甘肅省高等學校基本科研業務費對本文給予了資助,謹致謝意.

[1] Eells J, Sampson J H. Harmonic mappings of Riemannian manifolds[J]. Am J Math,1964,86:109-160.

[2] 姜國英. 2-調和映照及其第一、第二變分公式[J]. 數學年刊,1986,A7(4):389-402.

[3] Chen B Y. Some open problems and conjectures on submanifolds of finite type[J]. Soochow J Math,1991,17(2):169-188.

[5] Caddeo R, Montaldo S, Oniciuc C. Biharmonic submanifolds in spheres[J]. Israel J Math,2002,130:109-123.

[6] Caddeo R, Montaldo S, Oniciuc C. Biharmonic submanifolds of3[J]. Internat J Math,2001,12(8):867-876.

[8] Liu J C, Du L. Biharmonic submanifolds inδ-pinched Riemannian manifolds[J]. J Math Research & Expo,2010,30(5):891-896.

[9] Montaldo S, Oniciuc C. A short survey on biharmonic maps between Riemannian manifolds[J]. Revista de La Unión Matemtica Argentina,2006,47(2):1-22.

[10] 歐陽崇珍. 偽黎曼空間型的2-調和類空子流形[J]. 數學年刊,2000,A21(6):649-654.

[11] Zhang W. Biharmonic space-like hypersurfaces in pseudo-Riemannian space[J/OL]. arXiv:0808.1346v1,2008.

[12] Albujer A L. New examples of entire maximal graphs in2×R1[J]. Diff Geom Appl,2008,26(4):456-462.

[13] Albujer A L, Alías L J. Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces[J]. J Geom Phys,2009,59(5):620-631.

[14] Albujer A L, Camargo F E C, de Lima H F. Complete spacelike hypersurfaces with constant mean curvature in -R×n[J]. J Math Anal Appl,2010,368(2):650-657.

[15] Fetcu D, Oniciuc C, Rosenberg H. Biharmonic submanifolds with parallel mean curvature inn×R[J]. J Geom Anal,2013,23(4):2158-2176.

[16] Kobayashi S, Nomizu K. Foundations of Differential Geometry[C]//Pure and Applied Mathematics. New York:Wiley,1969:15.

[17] Baird P, Wood J C. Harmonic Morphisms between Riemannian Manifolds[C]//London Mathematical Society Monographs. Oxford:Oxford University Press,2003:29.

[18] Chen B Y. Pseudo-Riemannian Geometry,δ-Invariants and Applications[M]. New Jersey:World Scientific Publishing,2011.

[19] Alencar H, do Carmo M, Tribuzy R. A Hopf theorem for ambient spaces of dimensions higher than three[J]. J Diff Geom,2010,84:1-17.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 白丝美女办公室高潮喷水视频| 亚洲一级毛片免费观看| 亚洲国产无码有码| 尤物视频一区| 日本a级免费| 日韩午夜福利在线观看| 91精品国产无线乱码在线| 国产亚洲视频在线观看| 91精品国产综合久久香蕉922| 亚洲欧美日韩精品专区| 欧美亚洲一区二区三区导航| 国产精品尤物在线| 国产成人综合久久精品下载| 久热这里只有精品6| 又污又黄又无遮挡网站| 国产精品99r8在线观看| 伊人天堂网| 秘书高跟黑色丝袜国产91在线 | 亚洲高清免费在线观看| 中文字幕欧美日韩| 在线观看亚洲国产| 91成人在线观看| 免费99精品国产自在现线| 国产资源免费观看| 亚洲一区第一页| 青青草一区| 五月天丁香婷婷综合久久| 97超级碰碰碰碰精品| 婷婷午夜影院| 亚洲美女一级毛片| 亚洲 日韩 激情 无码 中出| 国产高潮视频在线观看| 亚洲成aⅴ人在线观看| 欧美精品影院| 久久综合亚洲鲁鲁九月天| 中国丰满人妻无码束缚啪啪| 在线国产综合一区二区三区| 国产亚洲精久久久久久无码AV| 午夜爽爽视频| 老司机精品99在线播放| 99热这里都是国产精品| 国产精品成人啪精品视频| a级毛片在线免费观看| 国产永久在线视频| www.youjizz.com久久| 91外围女在线观看| 国产尤物在线播放| 亚洲另类国产欧美一区二区| 国产va在线观看免费| 毛片免费在线视频| 91精品免费久久久| 久久这里只有精品23| 国产亚洲视频播放9000| 午夜少妇精品视频小电影| 免费无码AV片在线观看国产| 日韩天堂网| 日韩av在线直播| 亚洲欧洲综合| 一本大道AV人久久综合| 国产9191精品免费观看| 成人午夜视频在线| 日韩av电影一区二区三区四区| 国产毛片一区| 亚洲中文字幕在线观看| 国产成年女人特黄特色毛片免| 日本在线免费网站| 亚洲精品男人天堂| 成人国产精品一级毛片天堂| 国产区成人精品视频| 亚洲欧美极品| 国产国模一区二区三区四区| 欧美亚洲综合免费精品高清在线观看| 亚洲色图欧美在线| 国产手机在线小视频免费观看| 亚洲天堂视频网站| 欧美人人干| 亚洲swag精品自拍一区| 国产欧美日韩资源在线观看| 国产精品丝袜视频| 99久久精品久久久久久婷婷| 9丨情侣偷在线精品国产| 成人韩免费网站|