999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Poincaré Series of Relative Invariants of Finite Pseudo-reflection Groups in Finite Fields

2014-03-19 09:34:18QINXiaoerYANLi

QIN Xiaoer, YAN Li

(College of Mathematics and Computer Science, Yangtze Normal College, Chongqing 408100)

1 Introduction

Invariants theory is an important branch of algebra. In 1890, using the Hilbert basis theorem, Hilbert[1]proved the invariants ofGLn(C) is finitely generated. In 1955, for every finite reflection group, Chevalley[2]got that each invariant of finite reflection groups can be represented by the polynomial of elementary invariants, and this result was extended to finite pseudo-reflection groups. Poincaré series is an algebraic invariant. In 1897, Molien[3]gave a formula to compute the Poincaré series of the general linear groups. The invariants and relative invariants have relations with Poincaré series, such as the coefficients of Poincaré series are the dimensions of the invariants corresponding degrees. The relative invariants of finite pseudo-reflection groups are similar to the invariants of finite pseudo-reflection groups, and the relative invariants of finite pseudo-reflection groups have some relation with the 1-dimension representation of the groups. Wan[4]introduced the invariants and relative invariants theory of finite reflection groups. Smith[5]gave the relation between invariants and relative invariants of finite pseudo-reflection groups. Nan and Qin[6]did some researches on relative invariants of finite pseudo-reflection groups in the general fields, and computed the Poincaré series of relative invariants of finite pseudo-reflection groups. Recently, invariants of groups have been an interesting subject of study. Nan and his students[7-11]did many researches on this topic, and more and more scholars begin to study invariants, we refer the readers to [12-15].

LetFqbe a finite field withq=pm,m≥1, andVbe then-dimensional vector space overFq. The pseudo-reflection and the reflecting hyperplane are defined as follows

σ∈GL(V),H={ξ∈V|σξ=ξ}.

If dimH=n-1, thenσis called a pseudo-reflection, and subspaceHis called the reflecting hyperplane ofσ. A vectorv≠0 in Im(σ-1) is called a reflecting vector ofσ.

For convenience, we always supposeGis a finite pseudo-reflection group that is generated by the fundamental pseudo-reflectionss1,s2,…,sn,Fqdenotes a fixed finite field with characteristicp, unless the contrary is explicitly stated.σhas finite order,pdoes not divide the order ofσ(which we shall call the nonmodular case), thusσmust be diagonalizable.

2 The 1-dimensional representation of finite pseudo-reflection groups in finite field

We can now give the first main result of this paper.

Theorem2.1LetPbe aχ-relative invariant of the groupG, i.e. for eachσ∈G,σ·P=χ(σ)P,P≠0,Fqbe a finite field andGbe a finite pseudo-reflection group. Forσ∈G, let |σ|=r. Ifr|q-1, thenχ(σ)=1 orχ(σ)=(detσ)α, where 1≤α≤r-1.

ProofLetUbe a reflecting hyperplane of a pseudo-reflectionσ, letGU=〈σ〉,|σ|=r. Take a basisε1,ε2,…,εn, such that

σi(εj) =εj, 1≤j≤n-1,

σ·P=χ(σ)P,

Suppose that

then

which is equivalent to

Sincer|q-1, comparing coefficients of thexn, we get that

χ(σ)=1 orP0=0;

χ(σ)ξσ=1 orP1=0;

……

0≤m1,m2≤r-1,

0≤α≤r-1.

This completes the proof of Theorem 2.1.

In what follows we shall characterize the relation between theχ-relative invariants and invariants ofG. LetH(G)={Hs|s∈G} denote the set of reflecting hyperplanes of all pseudo-reflections inG,

Hs={λ∈V|ls(x1,x2,…,xn)(λ)=0}

is defined byls(x1,x2,…,xn)=0, wherels(x1,x2,…,xn)=0 is a homogeneous linear polynomial. IfU∈H(G) is a reflecting hyperplane ofG, denotesGUthe pointwise stabilizer ofUinG. This is the group generated by all the pseudo-reflections inGwithUa reflecting hyperplane together with 1. For everyU∈H(G), chooseaU∈Nminimal such that

χ(sU)=det(sU)aU

and introduce the form

In the following, we shall show that

divides everyχ-relative invariant ofG. We need the following lemmas.

If none ofl1,l2,…,lkis nonzero multiples ofls, thenα1α2…αk=1 andL=α1α2…αkis a invariant ofs.

Writing

Thus

i.e.

is aχ-relative invariant.

By Lemma 2.5, we can make the conclusion that the difference between relative invariants and invariants is only one divisor

3 The Poincaré series of relative invariants of finite pseudo-reflection groups in finite fields

Fq[V*] is a gradedFq-algebra, the Poincaré series ofFq[V*] is defined as follows

whereFq[V*]dis aFq-subspace consisting of all homogeneous polynomial functions of degreedinFq[V*]. For the finite subgroup of the general linear group, its Poincaré series of invariants can be characterized by Molien’s Theorem. In what follows, we give the second main result of this paper.

Theorem3.1LetVbe a finite dimensionFqvector space. LetG∈GL(V) be a finite nonmodular subgroup. Ifpdoes not divide |G|, then

we defineσ·fas

then

Supposeλ1(σ-1),λ2(σ-1),…,λn(σ-1) are the eigenvalue of the linear tranformationσ-1, then

Sinceλi(σ-1)=λi(σ)-1,i=1,2,…,n,

Thus

[1] Hilbert D. Uber die theorie der algebarischen[J]. Math Ann,1890,36:473-534.

[2] Chevallay C. Invariants of finite groups generated by reflections[J]. Am J Math,1955,77:778-782.

[3] Molien T. Uber Die Invarianten Der Lenear Substitutions Gruppen[M]. Berliner:Sitzungsberichte,1898:1152-1156.

[4] Wan Z X. Invariants Theory of Finite Reflection Groups[M]. Shanghai:Shanghai Jiao Tong University Press,1997.

[5] Smith L. Free modules of relative invariants and some rings of invariants that are Cohen-Macaulay[J]. Proc Am Math Soc,2006,8:2205-2212.

[6] Nan J Z, Qin X E. The Poincaré series of relative invariants of finite pseudo-reflection groups[J]. J Math Research and Exposition,2010,30:338-344.

[7] Nan J Z, Chen Y. The invariants of the groups of lower triangular matrices over finite fields[J]. Acta Math Scientia,2011,A31:678-681.

[8] Nan J Z, Chen Y. Ring of invariants of general linear group over local ring[J]. Front Math China,2011,6:887-899.

[9] Nan J Z, Zhao H F. Modular vector invariants of cyclic groups[J]. Math Research and Exposition,2011,6:997-1002.

[10] Nan J Z, Zhao J. Rational invariants of the generalized classical groups[J]. Commun Math Research,2011,2:127-138.

[11] Nan J Z, Qin Y F. On invariants of some maximal subgroups of finite classical groups[J]. Algebra Colloquium,2012,19:149-158.

[12] Sezer M. Explicit separating invariants for cyclicP-groups[J]. J Combinatorial Theory,2011,A118:681-689.

[13] Chuai J. Invariants of modular groups[J]. J Algebra,2007,318:710-722.

[14] Dufresne E. Separating invariants and finite reflection groups[J]. Adv Math,2009,221:1979-1989.

[15] Derksen D, Kemper G. Computing invariants of algebraic groups in arbitrary characteristic[J]. Adv Math,2008,217:2089-2129.

主站蜘蛛池模板: 91成人免费观看在线观看| 日韩欧美成人高清在线观看| 91网址在线播放| 手机在线国产精品| 精品少妇人妻无码久久| 久久精品无码一区二区国产区| 99视频全部免费| 精品夜恋影院亚洲欧洲| 国产欧美日韩在线在线不卡视频| 欧美日韩午夜| 国产成人一区| 久久99国产综合精品女同| 人妻丰满熟妇AV无码区| 国产福利拍拍拍| 日韩国产精品无码一区二区三区| 国产资源免费观看| 91人妻在线视频| 亚洲欧美日韩视频一区| 欧美性精品| 这里只有精品免费视频| 国产在线拍偷自揄拍精品| 国产欧美日韩免费| 人人爽人人爽人人片| 欧洲免费精品视频在线| 青青草国产精品久久久久| lhav亚洲精品| 精品伊人久久久久7777人| 四虎亚洲精品| 日韩欧美中文字幕在线精品| www.狠狠| 91午夜福利在线观看精品| 在线观看91精品国产剧情免费| 韩日午夜在线资源一区二区| 国产亚洲视频在线观看| 国产xx在线观看| 国产在线高清一级毛片| 欧美日本视频在线观看| 欧美精品高清| 成人综合在线观看| 另类综合视频| 美女视频黄又黄又免费高清| 四虎影视库国产精品一区| 亚洲无码在线午夜电影| 99re在线观看视频| 国产乱人乱偷精品视频a人人澡| 久久这里只有精品国产99| 露脸国产精品自产在线播| 亚洲人成网18禁| 天堂久久久久久中文字幕| 中文字幕天无码久久精品视频免费 | 一本二本三本不卡无码| 国产成人久久综合一区| 亚洲男人的天堂久久香蕉| 亚洲第一黄片大全| 欧美激情综合一区二区| 国产精品第5页| 欧美一级在线| 亚洲男人在线天堂| 尤物视频一区| 玖玖精品在线| 中文无码影院| 亚洲综合香蕉| 91亚洲国产视频| 国产精品尤物铁牛tv| 欧美激情第一欧美在线| 欧美精品成人| 伊人无码视屏| 免费a在线观看播放| 免费无遮挡AV| AV熟女乱| 中文字幕无码av专区久久| JIZZ亚洲国产| 极品私人尤物在线精品首页| h视频在线观看网站| 亚洲国模精品一区| 91久草视频| 在线观看国产小视频| 色爽网免费视频| 亚洲精品男人天堂| 一级毛片在线播放| 亚洲色欲色欲www在线观看| 亚洲日韩精品无码专区97|