999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

鋼液中鎂合金復合脫氧熱力學分析

2014-03-20 06:20:56張同生王德永劉承軍張永啟姜茂發
材料與冶金學報 2014年2期
關鍵詞:區域

張同生,王德永,劉承軍,張永啟,姜茂發

(東北大學 材料與冶金學院,沈陽 110819)

鋼液中鎂合金復合脫氧熱力學分析

張同生,王德永,劉承軍,張永啟,姜茂發

(東北大學 材料與冶金學院,沈陽 110819)

鎂具有凈化鋼液、細化鋼中非金屬夾雜物的作用.針對鋼液鎂處理技術的發展需求,本文采用一階和二階相互作用系數,基于吉布斯自由能最小原理計算得到了Mg-Al-O、Mg-Si-O、Mg-Ti-O、Mg-Zr-O的熱力學優勢區域圖,并探討合金元素含量與脫氧平衡產物間的關系.通過熱力學計算,揭示了鋼液鎂處理在不同脫氧制度下鋼中脫氧產物的變化規律,可為鎂處理在生產實踐中的應用奠定理論基礎.

鎂合金;復合脫氧;熱力學;非金屬夾雜物

近年來,汽車工業、管道工程、大型橋梁、造船工業、工程機械的發展極大拉動了市場對潔凈鋼和低合金高強度鋼的需求.隨著用戶對鋼材性能要求日益嚴格,對鋼鐵的質量要求的不斷提高,進一步減少鋼中夾雜含量并有效控制夾雜物的形態,是很長時期鋼鐵行業的發展方向.

金屬鎂具有極強的脫氧、脫硫能力,且鎂在鋼液中溶解度較大[1~4].1 873 K時,鎂在碳飽和鐵液中的溶解度(質量分數)為0.053 2%,而鈣僅為0.018%~0.031%.鎂的脫氧、脫硫產物彌散性好,不易聚合,高溫下穩定,且MgO、MgS與α-Fe之間具有較低的晶格錯配度,有利于晶內鐵素體附著形核[5~8].但金屬鎂相對密度小,熔點低,蒸氣壓高(1 873 K時,鎂在碳飽和鐵液中蒸氣壓高達2.02 MPa),直接加入鋼液收得率極低.為提高金屬鎂的收得率,噴吹法或喂線法正引起廣泛的關注.

針對不同鋼液脫氧模式,有必要控制合理的鎂加入量,以實現鎂脫氧優勢及對夾雜物的控制效果.為此,本文對Mg-Al-O、Mg-Si-O、Mg-Ti-O、Mg-Zr-O體系進行了脫氧平衡熱力學計算,以評估二元合金脫氧時夾雜物成分控制區域,為工業應用提供理論基礎.

1 脫氧熱力學計算方法

鎂脫氧熱力學平衡及相平衡計算是基于吉布斯自由能變最小原理.由于研究的元素(如Mg、Ti、Al、Zr等)在鋼液中濃度較低,將鋼液假定為理想稀溶液,其中溶質遵循亨利定律.組元活度系數計算選用1%(質量)極稀溶液為標準態,組元活度系數與元素間相互作用系數采用瓦格納提出的泰勒展開式表示,如式(1)所示.計算過程中涉及到鋼液中元素相互作用系數見表1.

本文計算是利用文獻中已知的反應式自由能變,通過線性組合的方法得到穩定區域轉化的邊界方程及其自由能變.然后根據其平衡常數,使用Matlab2012a計算并繪制出優勢區域圖.

表1 元素在鐵液中1873K溫度下的相互作用系數Table 1 Mass percent interaction parameters of the element in liquid iron at 1 873 K

2 計算結果及討論

2.1 Mg-Al復合脫氧

當活度系數使用瓦格納關系式表達出來時,平衡常數可以利用 Lupis方程式表示成等式4[39].

在鋼鐵生產過程中,由于鋁有很強的脫氧能力,廣泛作為終脫氧劑使用.并且,鋁脫氧產物易與耐火材料及渣中的MgO反應生成夾雜物,故Mg-Al-O系夾雜物是生產中較為常見的一類夾雜物.從Al2O3-MgO相圖中可以看到,在煉鋼溫度(1 873 K)下Al2O3和MgO中間產物只有鎂鋁尖晶石(MgO·Al2O3)一種,且生成區域相對較大.Al-Mg-O體系中除了存在反應(2)外,還存在如下反應[12,13]:

使用線性組合方法得到MgO·Al2O3與Al2O3和MgO與MgO·Al2O3的邊界線方程:

由邊界線方程(7)和邊界線方程(8),可以計算得到Mg-Al-O系脫氧產物的穩定區域圖,如圖1所示.隨著鋼中鋁、鎂含量的變化,脫氧平衡產物可以分為MgO、MgO·Al2O3和Al2O3三個區域.由圖可知,對于鋼中Al2O3夾雜物引起的水口結瘤問題,提高[Mg]和降低[Al]含量均可以得到有效的避免.

當鋼中[Al]s質量分數在0.01%~0.1%范圍內變化時,鋼中微量的鎂就能形成鎂鋁尖晶石產物.尖晶石夾雜物屬脆性夾雜物,熔點高(2 135℃),不變形,屬于硬質夾雜物,對鋼的疲勞壽命有不利影響.但從另一個方面看,尖晶石夾雜物粒度小,分布彌散,相對于簇群狀的Al2O3夾雜物,尖晶石夾雜物的危害程度明顯減弱.文獻[44]證實:若鎂鋁尖晶石形成細小、彌散型夾雜物存在于鋼中不會對鋼形成產生明顯影響;但文獻[45,46]則認為尖晶石夾雜物容易導致鋼材制品缺陷,且澆注過程中,尖晶石夾雜物顆粒易沉積在侵入式水口內部造成水口堵塞.由于鎂鋁尖晶石相(MgO·Al2O3)穩定區域較寬,通過調整鎂鋁元素含量來避免尖晶石的生成會非常吃力.近年來,有研究[13]指出,采用鈣處理的方法,可以將鎂鋁尖晶石夾雜物變質成CaO-Al2O3-MgO系中的液相區域,從而減少了鎂鋁尖晶石夾雜物對水口結瘤的危害.也有學者[17,38]通過提高鋼液的[Ti]含量,從而對鎂鋁尖晶石進行有效的變質處理.

2.2 Mg-Si復合脫氧

圖1 1 873 K溫度下MgO、MgO·Al2O3與Al2O3的穩定區域與等氧勢線圖Fig.1 Phase stability diagram of MgO,MgO·Al2O3,and Al2O3,and iso-oxygen contour lines calculated at 1 873 K

生產實踐中,針對某些對B類、D類夾雜物敏感的鋼種,如簾線鋼、彈簧鋼等,要盡量避免脫氧生成Al2O3夾雜物.為此,一般選用Si或Mn進行脫氧,Si-Mn復合脫氧鋼中氧含量較高,但通過控制w[Mn]/w[Si]>2.5,可以實現夾雜物的塑性化,大幅提高鋼的韌性和拉拔性能,并能有效防止浸入式水口結瘤發生[47].為了進一步降低Si-Mn脫氧鋼中氧含量,充分發揮鎂處理對鋼液的凈化作用,研究在Si-Mn脫氧的基礎上進行鎂處理是一種全新的嘗試.為此,本文計算了Mg-Si復合脫氧體系,并繪制了Si-Mg-O復合脫氧產物穩定區域圖.從SiO2-MgO相圖中可知,1873 K下,SiO2和MgO中間產物只有鎂橄欖石(2MgO·SiO2)一種.Si-Mg-O體系中存在如下反應[30,48]:

使用線性組合方法得到MgO、MgO·SiO2與SiO2的邊界線方程:

由邊界線方程(11)和(12),可以得到MgO、2MgO·SiO2與SiO2的穩定區域圖,如圖2所示.由圖可知,當鋼中w[Si]≤0.1%時不能生成純的SiO2,即使鋼中微量的鎂存在,平衡脫氧產物也是MgO,這是由于Si的脫氧產物被鎂還原的結果.鎂橄欖石(2MgO·SiO2)的存在穩定區域較大,幾乎存在于鋼中最常用的Si含量范圍內.鎂橄欖石(2MgO·SiO2)熔點較高,為1 890℃,因此,單獨采用Si-Mg脫氧是不能實現夾雜物液相化的,但有關鎂橄欖石夾雜物行為特征(如尺寸分布、聚合能力、晶內鐵素體形核效果等)的研究尚未見報道,需在以后的研究中引起重視.

圖2 1 873 K溫度下MgO、2MgO·SiO2與SiO2的穩定區域圖與等氧勢線圖Fig.2 Phase stability diagram of MgO,2MgO·SiO2and SiO2,and iso-oxygen contour lines calculated at 1 873 K

2.3 Mg-Ti復合脫氧

計算Mg-Ti復合脫氧是基于研究含鈦鋼種鎂處理的可行性.鈦系脫氧產物價態較多,如TixO2x-1(x≥3)型、TiO2及TiO等,但高價鈦的氧化物一般只形成于鋼液中氧活度較高的情況.文獻[23]證明,在單獨 Ti脫氧時,當 w[Ti]在0.25% ~4.75%范圍內,脫氧產物以Ti2O3為主.利用熱力學計算可以得出對應的溶解氧(質量分數)在3.5×10-3%以下.對于鈦鎂復合脫氧的情況,w[O]一般均在3.5×10-3%以下,故在此計算條件下,除Ti2O3之外,其他價態的鈦氧化物的形成可以被忽略.Ti-Mg-O體系中存在Mg的脫氧反應產物MgO之外,同時也存在著Ti的脫氧產物Ti2O3,以及它們的中間產物Ti2O3·MgO.上述物質生成反應的平衡常數計算式如下[17,23]:

使用線性組合方法得到MgO、MgO·Ti2O3與Ti2O3的邊界線方程:

由邊界線方程,可計算得到MgO、MgO·Ti2O3與Ti2O3的穩定區域圖,如圖3所示.由圖可知,當鋼中w[Ti]在0.01%~0.07%范圍內,鋼中微量鎂存在即可形成鎂鈦尖晶石相MgO·Ti2O3穩定相,隨著鎂含量增加,鎂鈦尖晶石穩定區域逐漸減小,當w[Mg]大于0.001%時,平衡脫氧產物有轉變成純MgO的趨勢.這是因為發生了反應(17):

圖3 1873K溫度下MgO、MgO·Ti2O3與Ti2O3的穩定區域圖與等氧勢線圖Fig.3 Phase stability diagram of MgO,MgO·Ti2O3,Ti2O3,and iso-oxygen contour lines calculated at 1873 K

關于Mg-Ti復合脫氧對鋼水潔凈度和夾雜物的細化效果,Kim[9]發現,Mn/Si/Ti脫氧鋼中加入微量鎂,隨溶解鎂含量增加,夾雜物成分按Ti2O3→Ti-Mg-O→MgTiO3→MgO轉變,平均尺寸由2.1 μm減小至1.2 μm以下,且含鎂夾雜物與鋼液具有更好的潤濕性.這與本計算脫氧平衡產物的演變規律是基本一致的.含鈦脫氧鋼中,有必要適當增加鎂的加入量,以避開形成MgO·Ti2O3夾雜物,促進夾雜物轉變成純MgO,以實現夾雜物細化的目標.

2.4 Mg-Zr復合脫氧

鋯脫氧對鋼中夾雜物的細化作用明顯,近年來頗受研究者關注[49~54].鋼中含痕量[Zr](質量分數)為3.0×10-3%時,夾雜物分布非常均勻,且脫氧產物ZrO2密度大(6.09 g/mm3),彌散、懸浮于鋼中可促進MnS、TiN大量形核.迄今,有關金屬鋯與其他元素復合脫氧的研究不多,尤其是鋯、鎂、鈦等復合脫氧對鋼中夾雜物非自發形核的研究還不多見.Zr具有可以與Mg相媲美的脫氧能力,而且Zr脫氧也是目前氧化物冶金技術的研究熱點,為此,計算Mg-Zr-O的優勢區域圖對于控制Mg-Zr復合脫氧產物具有重要的指導意義.從氧化物相圖可知,MgO與ZrO2之間無中間產物.故在Mg-Zr-O體系中,只存在反應(2)和反應(21).將反應(18)、(19)、(20)通過線性組合推算得到式(21)[24].

所以,Zr在鋼液中的脫氧反應及其自由能,如方程(21)所示.

再結合反應(2)推算得到邊界方程(22),如下式所示.

利用邊界方程(22),計算得到Mg-Zr-O的優勢區域圖,如圖4所示.由圖分析可知,對于Mg-Zr復合脫氧,當鋼中鎂含量較低時,脫氧平衡產物為純的ZrO2,當鎂含量較高時,脫氧平衡產物為純的MgO,這是由于鎂、鋯競爭脫氧造成的.此外,對于Mg-Zr復合脫氧,當w[Mg]、w[Zr]分別大于0.001%,鋼中w[O]可以降至極低,約為(3~4)×10-4%的水平,因此,Mg-Zr復合脫氧對提高鋼水潔凈度是非常有益的.

3 結語

近年來,鋼液鎂處理技術受到越來越廣泛的關注.鎂脫氧產物具有穩定不易分解及高度離散性等特征,在細化夾雜物尺寸方面具有良好的效果.因此,無論是對提高鋼水潔凈度還是發揮鎂系脫氧產物在氧化物冶金技術中促進晶內鐵素體形核方面均具有明顯的優勢.本文采用熱力學原理計算了常用的幾種含鎂復合脫氧方式的脫氧特征,分析了脫氧產物的穩定區域與元素含量之間的關系,為進一步深入研究鎂在不同鋼液脫氧方式下夾雜物行為特征提供理論依據.

圖4 1 873 K溫度下MgO與ZrO2的穩定區域圖與等氧勢線圖Fig.4 Phase stability diagram of MgO and ZrO2,and iso-oxygen contour lines calculated at 1873 K

[1]Yamamoto R,Fukaya H,Satoh N,et al.Magnesium deoxidation equilibrium of molten Fe-Cr-Ni alloy expressed by quadratic formalism and redlich-Kister type polynomial[J].ISIJ International,2011,51(6):895-900.

[2]Takata R,Yang J,Kuwabara M.Characteristics of inclusions generated during Al-Mg complex deoxidation of molten steel[J].ISIJ international,2007,47(10):1379-1386.

[3]Yonemoto L M,Miki T,Hino M.Magnesium deoxidation equilibrium of molten Fe-Ni alloy expressed by quadratic formalism and redlich-kister type polynomial[J].ISIJ International,2008,48(6):755-759.

[4]Haddock J T,Hussain I,Fox A G,et al.New MgO-CaO based reagent for ladle treatment of steel[J].Ironmaking and Steelmaking,1994,21(6):479.

[5]Saxena S K.Production of ultra-clean steels with better mechanical properties with magnesium treatment[C].1996 steelmaking conference proceeding,1996:89.

[6]Kimura S,Nakajima K,Mizoguchi S.In-situ observation of the precipitation ofmanganesesulfidein low -carbon magnesium-killed steel[J].Metallurgical and Materials Transactions A,2001,33(2):427-436.

[7]Kimura S,Nakajima K,Mizoguchi S.Behaviors of aluminamagnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steel[J].Metallurgical and Materials Transactions B,2001,32B(2):79-85.

[8]Fu J,Yu Y G,Wang A R,et al.Inclusion modification with Mg treatment for 35CrNi3MoV steel[J].Journal of Materials Science Technology,1998,14(1):53-56.

[9]Kim H S,Chang C H,Lee H G.Evolution of Inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steel[J].ScriptaMaterialia,2005(53):1253-1258.

[10]Ono H,Nakajima K,Ibuta T,et al.Equilibrium relationship between the oxide compounds in MgO-Al2O3-Ti2O3and molten iron at 1873K[J].ISIJ International,2010,50(12): 1955-1958.

[11]Satoh N,Taniguchi T,Mishima S,et al.Prediction of nonmetallic inclusion formation in Fe-40mass%Ni-5mass% Cr alloy production process[J].Tetsu-to-Hagané,2009,95(12):827-836.

[12]Itoh H,Hino M,Ban-ya S.Deoxidation equilibrium of magnesium in liquid iron[J].Tetsu-to-Hagané,1997,83 (10):623-628.

[13]Itoh H,Hino M,Ban-ya S.Thermodynamics on the formation of non-metallic inclusion of spinel(MgO· Al2O3)in liquid steel[J].Tetsu-to-Hagané,1998,84 (2):85-90.

[14]Ohta H,Suito H.Calcium and magnesium deoxidation in Fe-Ni and Fe-Cr alloys equilibrated with CaO-Al2O3and CaO-Al2O3-MgO slags[J].ISIJ International,2003,43 (9):1293-1300.

[15]Itoh H,Hino M,Ban-ya S.Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel[J].Metallurgical and Materials Transactions B,1997,28B(10): 953-956.

[16]Todoroki H,Mizuno K.Effect of silica in slag on inclusion compositions in 304 stainless steel deoxidized with aluminum[J].ISIJ International,2004,44(8):1350-1357.

[17]Ono H,Ibuta T.Equilibrium relationships between oxide compounds in MgO-Ti2O3-Al2O3with iron at 1873 K and variations in stable oxides with temperature[J].ISIJ International,2011,51(12):2012-2018.

[18]Nishi T,Shinme K.Formation of spinel inclusions in molten stainless steel under Al deoxidation with slags[J].Tetsu-to-Hagané,1998,84(12):837-843.

[19]Ohta H,Suito H.Deoxidation equilibria of calcium and magnesium in liquid iron[J].Metallurgical and Materials Transactions B,1997,28B(12):1131-1139.

[20]Cho S W,Suito H.Assessment of aluminum -oxygen equilibrium in liquid iron and activities in CaO-Al2O3-SiO2slags[J].ISIJ International,1994,34(2):177-185.

[21]Taguchi K,Ono -nakazato H,Nakazato D,etal.Deoxidation and desulfurization equilibria of liquid Iron by calcium[J].ISIJ International,2003,43(11):1705-1709.

[22]Ohta H,Suito H.Activities in CaO-MgO-Al2O3slags and deoxidation equilibria ofAl,Mg,and Ca[J].ISIJ International,1996,36(8):983-990.

[23]Pak J J,Jo J O,Kim W Y,et al.Thermodynamics of titanium and oxygen dissolved in liquid iron equilibrated with titanium oxides[J].ISIJ International,2007,47(1):16-24.

[24]Inoue R,Ariyama T,Suito H.Thermodynamics of zirconium deoxidation equilibrium in liquid iron by EMF measurements[J].ISIJ International,2008,48(9):1175-1181.

[25]Cha W Y,Nagasaka T,Miki T,et al.Equilibrium between titanium and oxygen in liquid Fe-Ti alloy coexisted with titanium oxides at 1873 K[J].ISIJ International,2006,46 (7):996-1005.

[26]Kishi M,Inoue R,Suito H.Thermodynamics of oxygen and nitrogen in liquid Fe-20mass%Cr alloy equilibrated with titania-based slags[J].ISIJ International,1994,34(11): 859-867.

[27]Ma Z,Janke D.Characteristics of oxide precipitation and growth during solidification of deoxidized steel[J].ISIJ International,1998,38(1):46-52.

[28]Karasev A,Suito H.Quantitative evaluation of inclusion in deoxidation of Fe-10 mass Pct Ni alloy with Si,Ti,Al,Zr and Ce[J].Metallurgical and Materials Transactions B,1999, 30B(4):149-257.

[29]Ohta M,Sano N,Morita K.Thermodynamic consideration on the oxide system containing MnO and TiO2as deoxidization productsin steels[J]. ISIJInternational,2000,40 (Supplement):S87-S91.

[30]Suzuki K,Ban-ya S,Hino M.Deoxidation equilibrium of Cr-Ni stainless steel with Si at the temperatures from 1823 to 1923 K[J].ISIJ International,2002,42(2):146-149.

[31]Higuchi Y,Numata M,Fukagawa S,et al.Effect of method of Ca treatment on composition and shape of non-metallic inclusions[J].Tetsu-to-Hagané,1996,82(8):671-676.

[32]Itoh H,Hino M,Ban-ya S.Assessment of Al deoxidation equilibrium in liquid Iron[J].Tetsu-to-Hagané,1997,83 (12):773-778.

[33]Ishii F,Ban-ya S,Hino M.Thermodynamics of the deoxidation equilibrium of aluminum in liquid nickel and nickel-lron alloys[J].ISIJ International,1996,36(1):25-31.

[34]Jo S K,Song B,Kim S H.Thermodynamics on the formation of spinel(MgO·Al2O3)inclusion in liquid iron containing chromium[J].Metallurgical and Materials Transactions B,2002,33B(10):703-709.

[35]Morioka Y,Morita K,Tsukihashi F,et al.Equilibria between molten steels and inclusions during deoxidation by titaniummanganese alloy[J].Tetsu-to-Hagané,1995,81(1):40-45.

[36]Sakao H.Equilibrium constants for the deoxidation of liquid Iron with silicon and aluminum[J].Tetsu-to-Hagané,1990,76(1):17-24.

[37]Suito H,Inoue R.Thermodynamics on control of inclusions composition in ultraclean steels[J].ISIJ International,1996,36(5):528-536.

[38]Park J H,Lee S B,Gaye H.Thermodynamics of the formation of MgO-Al2O3-TiOxinclusions in Ti-stabilized 11Cr ferritic stainless steel[J].Metallurgical and Materials Transactions B,2008,39(6):853-861.

[39]黃希祜.鋼鐵冶金原理(第三版)[M],北京:冶金工業出版社,2000.

(Huang Xihu.The principle of iron and steel metallurgy(the third edition) [M].Beijing:MetallurgicalIndustry Press,2000.)

[40]Seo W G,Han W H,Kim J S,et al.Deoxidation equilibria among Mg,Al and O in liquid Iron in the presence of MgO· Al2O3spinel[J].ISIJ International,2003,43(2):201-208.

[41]Han Q,Zhou D,Xiang C.Determination of dissolved sulfur and Mg-S,Mg-O equilibria in molten iron[J].Steel Research,1997,68(1):9-14.

[42]SeoJ,Kim SH.ThermodynamicassessmentofMg deoxidation reaction of liquid iron and equilibria of[Mg]-[Al]-[O]and[Mg]-[S]-[O][J].Steel Research,2000,71(4):101-106.

[43]Kawashita Y,Suito H.Precipitation behavior of Fe-Al-O inclusions under unidirectional solidification of Fe-30mass% Ni alloys saturated with CaO -Al2O3slags[J].ISIJ International,1995,35(12):1459-1467.

[44]Saxena S K,Using magnesium treatment to produce super clean steel with excellent mechanical property[J].SEAISI,1997,(7):42-52.

[45]Mizuno K,Todoroki H,Noda M,et al.Effects of Al and Ca in ferrosilicon alloys for deoxidation on inclusion composition in type 304 stainless steel[J].Iron and Steel-maker,2001,28 (8):93-101.

[46]Todoroki H,Inada S.Recent innovation and prospect in production technology of specialty steels with high cleanliness[J].Bull.Iron Steel Inst.,2003,8(2):575.

[47]陳家祥.鋼鐵冶金學(煉鋼部分)[M].北京:冶金工業出版社,2009:14-15.

(Chen Jiaxiang.The ferrous metallurgy(steelmaking)[M].Beijing:Metallurgical Industry Press,2009:14-15.)

[48]Jiang Z H,Li S J,Li Y.Thermodynamic calculation of inclusion formation in Mg-Al-Si-O system of 430 stainless steel melts[J].JournalofIron and SteelResearch International,2011,18(2):14-17.

[49]Sawai T,Wakoh M,Ueshima Y,et al.Analysis of oxide dispersion during solidification in Ti,Zr-deoxidized steel[J].ISIJ International,1992,32(1):169-173.

[50]Isselin J,Kasada R,Kimura A,et al.Effects of Zr addition on the microstructure of 14%Cr4%Al ODS ferritic steel[J].Materials Transactions,2010,51(5):1011-1015.

[51]Guo A M,Li S R,Guo J,et al.Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel [J]. Materials Characterization,2008,59(2):134-139.

[52]Trindade V B,Mello R S T,Payao J C,et al.Influence of zirconium on microstructure and toughness of low-alloy steel weld metals[J].Journal of Materials Engineeringand Performance,2006,15(3):284-289.

[53]Karasev A V,Suito H.Characteristics of fine oxide particles produced by Ti/M(M=Mg and Zr)complex deoxidation in Fe-10 mass%Ni alloy[J].ISIJ International,2008,48 (11):1507-1516.

[54]Ohta H,Suito H.Characteristics of particle size distribution of deoxidation products with Mg,Zr,Al,Ca,Si/Mn and Mg/ Al in Fe-10mass%Ni alloy[J].ISIJ International,2006,46 (1):14-21.

Thermodynamic analysis of complex deoxidization by magnesium-alloy in the liquid steel

Zhang Tongsheng,Wang Deyong,Liu Chengjun,Zhang Yongqi,Jiang Maofa
(School of Materials and Metallurgy,Northeastern University,Shenyang 110819,China)

Magnesium has a role to clean the steel and to refine the inclusions.In order to meet development of magnesium-treat technology,in this paper,the phase stability diagrams of Mg-Al-O、Mg-Si-O、Mg-Ti-O、Mg-Zr-O were drawn through first-and second-order interaction parameters,based on principle of Gibbs free energy minimization.And the relationship between the element content and the deoxidation products was discussed simultaneously.Through thermodynamic calculation,an evolution regulation for the deoxidation products was revealed,under different magnesium-treat conditions.The authors hoped that our work may present a theoretical basis for the practice.

magnesium-alloy;complex deoxidation;thermodynamic;inclusions

TF 704.1

A

1671-6620(2014)02-0079-06

2013-11-11.

國家自然科學基金資助項目 (50904017);中央高?;究蒲袠I務費項目 (N120602005)和 (N120502004).

張同生 (1984—),男,博士研究生,E-mail:neu_zts@163.com;姜茂發(1955—),男,東北大學教授,博士生導師.

文獻中[12]給出的鎂在鋼液中脫氧反應式及其平衡常數為:

猜你喜歡
區域
分割區域
探尋區域創新的密碼
科學(2020年5期)2020-11-26 08:19:22
基于BM3D的復雜紋理區域圖像去噪
軟件(2020年3期)2020-04-20 01:45:18
小區域、大發展
商周刊(2018年15期)2018-07-27 01:41:20
論“戎”的活動區域
敦煌學輯刊(2018年1期)2018-07-09 05:46:42
區域發展篇
區域經濟
關于四色猜想
分區域
公司治理與技術創新:分區域比較
主站蜘蛛池模板: 美女一级免费毛片| 婷婷激情亚洲| 国产精品开放后亚洲| 免费xxxxx在线观看网站| 国产成人精品在线1区| 亚洲精品在线影院| 亚洲第一区欧美国产综合| 亚洲床戏一区| 国产在线精品99一区不卡| 操操操综合网| 日韩精品久久久久久久电影蜜臀| 91久久偷偷做嫩草影院精品| 国产高清免费午夜在线视频| 国产福利小视频高清在线观看| 国产女人喷水视频| 日韩亚洲高清一区二区| 国产性生大片免费观看性欧美| 国国产a国产片免费麻豆| 午夜无码一区二区三区| 日日碰狠狠添天天爽| 热伊人99re久久精品最新地| 伊人中文网| 亚洲日产2021三区在线| 五月激激激综合网色播免费| 日本五区在线不卡精品| 欧美日韩国产在线人成app| 国产成人精品无码一区二| 少妇高潮惨叫久久久久久| 婷婷激情亚洲| 欧日韩在线不卡视频| 亚洲综合在线网| 亚洲第一国产综合| 婷婷色中文网| 亚洲成年人片| 亚洲视频a| 免费在线看黄网址| 天天摸天天操免费播放小视频| 精品自窥自偷在线看| 美女无遮挡免费视频网站| 久久精品国产精品国产一区| 久久人人97超碰人人澡爱香蕉| 亚洲无线视频| 欧美国产日产一区二区| 日韩福利视频导航| 亚洲欧州色色免费AV| 在线日韩一区二区| 国产乱人免费视频| 青青久久91| 日本人又色又爽的视频| 2021国产乱人伦在线播放 | 九九热精品在线视频| 国产95在线 | 国产一区二区三区精品久久呦| 日本精品αv中文字幕| 91色综合综合热五月激情| 狠狠v日韩v欧美v| 日韩成人在线网站| 国产国拍精品视频免费看| 天天综合网站| 波多野结衣亚洲一区| 国产自产视频一区二区三区| 成人a免费α片在线视频网站| 国产主播在线观看| 任我操在线视频| 亚洲国产天堂在线观看| 精品成人免费自拍视频| 亚洲人精品亚洲人成在线| 国产成人欧美| 亚洲无线国产观看| 一级全免费视频播放| 亚洲熟妇AV日韩熟妇在线| 香蕉精品在线| 国产一区二区三区在线观看视频| 成人精品亚洲| 久久狠狠色噜噜狠狠狠狠97视色 | 九九视频免费看| 国产又爽又黄无遮挡免费观看| 久久精品aⅴ无码中文字幕| 国产在线高清一级毛片| www中文字幕在线观看| 无码精品一区二区久久久| 天天综合天天综合|