999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GPmL-stability of the Rosenbrock methods for the systems of differential equations with many delays

2014-03-20 03:39:58LUZhiwen

LU Zhiwen

(School of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)

1 Introduction

We consider the stability behavior of the Rosenbrock method in the solution of the system of differential equations with many delays:

y′(t)=Ly(t)+M1y(t-τ1)+M2y(t-τ2)+…+Mmy(t-τm),t≥0,

(1)

y(t)=φ(t),t≤0.

(2)

wherey(t) denotes thed-dimension unknown vector (y1(t),y2(t),…,yd(t))T.

L,Mi,1≤i≤mare constant complexd×dmatrices,τi>0,1≤i≤mare constant delays,φ(t) is a given vector- value function andy(t)is unknown whent>0.

Many authors have considered the stability behavior of numerical methods for systems of delay differential equations.The Rosenbrock methods can easily be programmaed.Hairer et al.[1]considered the constructions and Piche[2]considered the stability of the Rosenbrock methods.Liu and coworkers[3-4]investigated the stability of the Rosenbrock methods.

The purpose of this paper is to investigate theGPmL-stability of the Rosenbrock methods for systems of differential equations with many delays.We shall prove that the Rosenbrock methods areGPmL-stable if and only if they areL-stable.

2 Basic Preparation and Lemma

Assuming an exponential solution of (1)(2) in the form

y(t)=ξ·eζt(ξ∈cd),

we have the characteristic equation of (1)(2)

det(ζI-L-M1e-ζτ1-M2e-ζτ2-…-Mme-ζτm)=0.

(3)

The following lemma guarantees that the system is asymptotically stable.

Lemma2.1[5]Assume that the coefficients of (1) satisfy

(4)

(5)

Then all roots of the characteristic equation (3) have negative real parts and the system of (1)(2) is asymptotically stable,i.e.

Now we give the stable definitions of numerical methods.

Definition2.2[6]IfL,Mi1≤i≤msatisfy (4)(5) in Lemma 2.1,then a numerical method is said to bePm-stable if the numerical solutionynof (1)(2) satisfies.

(6)

Definition2.3[6]A numerical method is said to beGPm-stable if the condition of the former definition ofPm-stability is satisfied for arbitrary positive stepsizeh.

3 GPm-stability of the Rosenbrock methods for DDEs

For the general Rosenbrock methods for the DDEs (1)(2),by the Lagrange interpolation,we have

(7)

(8)

where

(9)

(10)

Here

(11)

We apply the Rosenbrock methods (7)(8) to (1)(2),and get

So we can get the characteristic equation

(12)

where

T3(z)=-zn(bT?Id),

T4(z)=Id(zn-zn-1).

Lemma3.1[7]If det[T1(z)]≠0,then (12) is equivalent to

(i) |α(z,δi)|≤1,(|z|=1,0≤δi<1) if and only ifr≤s≤r+2;

(ii) ifr+s>0,r≤s≤r+2,|z|=1,0≤δi<1,then |α(z,δi)|=1if and only ifz=1.

Lemma3.3[3]LetA=B,r≤s≤r+2 and (4)(5) hold.Then the Rosenbrock method (7)(8) for the delay differential equations (1)(2) isGPm-stable if and only if the corresponding Rosenbrock methods for ODEs areA-stable.

4 GPmL-stability of the Rosenbrock methods for DDEs

We consider the test equations (1)(2).

Lemma4.1[7]For the characteristic equation (3),ifLandMk(1≤k≤m) satisfy (4)(5) and the following equatity (P):

Definition4.2[6]IfLandMi(1≤i≤m) satisfy (4)(5) and the condition (P),then a numerical method is said to bePmL-stable if and only if it isPm-stable and the numerical solutions {yn} of (1)(2) satisfy.

(13)

whereyn~y(tn),tn=nh,mih=τi,1≤i≤m,τi>0 are constant delays,mi≥1,1≤i≤mare natural numbers.

Definition4.3[6]A numerical method is said to beGPmL- stable if and only if it isGPm-stable and (13) holds for anyh>0.

Theorem4.4LetA=B,r≤s≤r+2,andL,Mk(k=1,2,…,m) satisfy (4)(5) and (P).Then the Rosenbrock methods for the DDEs (1)(2) areGPmL-stable if and only if the corresponding Rosenbrock methods for ODEs areL-stable .

Let

(14)

whereλ(A) denotes the eigenvalue of the matrixA.

Then

(15)

Let

Then (15) implies

(16)

Thus

Since

Then (16) can be written in the form

From the condition(P),we have

Then

forn≥N0.

From Lemma 3.1,

By the Spectral Mapping Theorem,we get

Then from the L-stability of the Rosenbrock methods,we have

and

Thus

:

[1] HAIRER E,NΦRSETT S P,WANNER G.Solving ordinary differential equations[M].New York:Spring Press,2000.

[2] ROBERT PICHE.An L-stable Rosenbrock method for step-by-step time integration in structural dynamics[J].Comput Methods Appl Mech Engrg,1995,126:343-354.

[3] CAO X N,LIU D G,LI S F.Asymptotic stability of rosenbrock methods for delay differential equations[J].J of System Simulation,2002,14(3):290-292.

[4] CHEN L R,LIU D G.Combined RK-Rosenbrock methods and their stability[J].Mathematica Numerica Sinica,2000,22(3):319-332.

[5] KUANG J X,TIAN H J.The numerical treatment of linear system with many delays:report of AMS[R].Kent State University:AMS,1995.

[6] KUANG J X.Numerical solution of delay differential equations[M].Beijing:Science Press,1999.

[7] LIN Q.Stability Analysis of Numerical Solution of Delay Differential Equations[D].Nagoya:Nagoya University,2003.

[8] HOUTIN’T K J.A new interpolation procedure for adapting runge-kutta methods to delay differential equations[J].BIT,1992,32:634-649.

主站蜘蛛池模板: 色妞永久免费视频| 香蕉eeww99国产在线观看| 国产一区二区精品福利| 天堂成人av| 国产精品综合色区在线观看| 99热亚洲精品6码| 国产成人精品无码一区二| 动漫精品中文字幕无码| 久久99蜜桃精品久久久久小说| 精品国产成人高清在线| 日韩成人在线网站| 国产成熟女人性满足视频| 在线免费无码视频| 国产在线观看一区精品| 久久精品女人天堂aaa| 国产一区二区人大臿蕉香蕉| 黄片在线永久| 亚洲欧美成人| 国产日本视频91| 午夜爽爽视频| 在线观看免费国产| 午夜国产大片免费观看| 午夜不卡视频| 在线五月婷婷| 亚洲一级无毛片无码在线免费视频| 日本一区二区不卡视频| 波多野结衣一二三| 欧美高清日韩| 精品91在线| 2022国产无码在线| 欧美日韩午夜| 伊人大杳蕉中文无码| 最新国产午夜精品视频成人| 欧美激情第一欧美在线| 色综合激情网| 成人毛片在线播放| 国产综合另类小说色区色噜噜| 免费不卡视频| 国产在线一区视频| 成人毛片免费在线观看| 欧美日本在线一区二区三区| а∨天堂一区中文字幕| 免费毛片视频| 国产啪在线91| 久久婷婷五月综合97色| 亚洲欧洲日韩久久狠狠爱| 色哟哟精品无码网站在线播放视频| 免费可以看的无遮挡av无码| 无码国产伊人| 亚洲伊人电影| 久久国产精品国产自线拍| 国产精选自拍| 国产精品视频观看裸模| 婷婷99视频精品全部在线观看 | 无码网站免费观看| 亚洲色成人www在线观看| 日韩一区精品视频一区二区| 91探花国产综合在线精品| P尤物久久99国产综合精品| 免费国产不卡午夜福在线观看| 二级特黄绝大片免费视频大片| 欧美一区二区福利视频| 日本五区在线不卡精品| 手机成人午夜在线视频| 日韩精品毛片| 日韩经典精品无码一区二区| 婷婷色婷婷| 精品福利视频导航| 精品人妻AV区| 国产黄在线观看| 国产高清又黄又嫩的免费视频网站| 亚洲成综合人影院在院播放| 亚洲乱码在线视频| 一本大道香蕉高清久久| 亚洲成aⅴ人片在线影院八| 免费在线视频a| 欧美第一页在线| 亚洲伊人久久精品影院| 成人伊人色一区二区三区| 凹凸国产分类在线观看| 国产精品久久精品| 国产网友愉拍精品|