史 敏, 呂建鑫, 潘 波, 王曉軍, 戴璐嫻, 楊曉紅, 付子毅, 謝 暉
(1. 江蘇省揚州市婦幼保健院 乳腺科, 江蘇 揚州, 225002; 2. 南京市婦幼保健院, 江蘇 南京, 210004)
microRNA(miRNA)是一類長度約21~25 nt的非編碼RNA, 在轉錄后水平調控靶基因的表達[1-2]。miRNA的成熟包括在胞核及胞質中的加工過程,在核酸內切酶Drosha作用下,miRNA的編碼基因由RNA聚合酶Ⅱ轉錄形成具有莖環結構的RNA由核內輸出,經Dicer酶加工形成成熟的miRNA,與Argonaute蛋白結合形成RISC(RNA-induced silencing complex, 基因沉默復合體),進而調控靶基因的表達[3-4]。miRNA與靶基因的3′-UTR區結合,導致mRNA降解和/或翻譯抑制,下調靶蛋白的表達,從而達到調控靶基因表達的目的[5]。事實上, miRNA調節了約30%的蛋白編碼基因,并參與多種生物學功能的調控,包括細胞增殖、凋亡及分化[6]。因此, miRNA的功能異常與多種人類疾病有關,包括腫瘤[7]在內。近年研究[8]表明, miRNA與多種實體腫瘤的耐藥性密切相關。經對乳腺癌細胞耐藥株及敏感株的研究,證實多種miRNA對乳腺癌多藥耐藥具有調控作用[9-14]。
乳腺癌是女性最常見的惡性腫瘤,全球每年約有1.4億新發病例,約有46萬婦女死于乳腺癌,是導致患癌癥婦女死亡的首要原因[15]。近年來,我國女性乳腺癌發病率逐年顯著遞增,遠高于其他國家,并趨于年輕化,嚴重威脅女性的生命健康和生活質量[16]。盡管在過去20年間,通過對疾病篩查的普遍實施和新的治療方法的發展,西方國家的乳腺癌死亡率顯著下降,但對這些治療方法的耐藥成為越來越嚴重的問題[17],據報道[18]約有90%的乳腺癌患者最終死于耐藥。乳腺腫瘤對結構和功能不同的化療藥物均可能產生多藥耐藥(MDR), 明顯影響化療效果。MDR是指腫瘤細胞在接觸一種抗腫瘤藥物并產生耐藥的同時,對結構、功能及殺傷機制迥異的多種抗腫瘤藥物具有交叉耐藥,是最重要的耐藥形式之一。最新研究[19]表明,MDR已成為乳腺癌治療失敗的關鍵因素。
Iorio等[20]于2005年首次發現,miRNA在乳腺癌和正常乳腺組織中表達存在顯著差異。Ryu等[21]在MCF-710A、MCF-7及MDA-MB-231等不同乳腺癌細胞株中鑒定出189種表達明顯異常的miRNA,且這些miRNA均有不同程度的致癌潛能。后續研究發現,多種miRNA與乳腺癌耐藥相關, miR-221/222在他莫昔芬耐藥的細胞中低表達[22], miR-328在米托蒽醌耐藥的細胞中低表達[23], miR-125在紫杉醇耐藥的細胞中高表達[24]等等。這些證據充分說明: miRNA的表達異常是乳腺癌耐藥細胞的一個重要特征,與乳腺癌耐藥有著極其密切的關系。miRNA對乳腺癌耐藥的調控機制十分復雜,目前并未完全闡明。現今較明確的機制主要包括調節ABC轉運蛋白的表達、調節凋亡通路、調節藥物代謝酶的表達及調節腫瘤干細胞的形成等。
乳腺癌患者產生MDR的最主要原因是由藥物外排增加、細胞內藥物濃度下降所致[25]。藥物外排增加受ABC轉運蛋白調節,其在預后較差的乳腺癌各亞型中均表達顯著增加[26]。P糖蛋白(P-glycoprotein)是ABC轉運蛋白中研究最為透徹的與藥物外排有關的蛋白,與紫杉烷類及蒽環類化療藥物耐藥密切相關。P-gp由MDR1基因(ABCB1)編碼,可以轉運多種分子結構,這即意味著只要對一種化療藥物耐藥,通常就會對多種結構不同的藥物耐藥。研究[11,27]表明,miR-27a、miR-451可能上調多藥耐藥基因MDR1及其產物P-gp的表達。另有多項研究顯示,miRNA能以ABC超家族的多個成員如ABCB、ABCG、ABCC等為靶基因,對腫瘤細胞耐藥性進行調控。Pan等[10]研究發現, miR-328在乳腺癌細胞中與ABCG2的表達呈負相關,耐藥細胞株MCF-7/MXl00中, miR-328表達顯著下調,而ABCG2表達顯著上調,導致細胞對米托蒽醌耐藥。Zhou等[24]為進一步闡明miR-328的調控機制,分別檢測轉染miR-328的MCF-7/MXl00細胞、轉染miR-328拮抗劑的MCF-7細胞以及破壞ABCG2 3′-UTR區相應miR-328反應元件(MRE)的MCF-7細胞等的ABCG2 3′-UTR的熒光素酶活性,發現其分別下降50%以上、上升100%及上升3倍,這充分證實miR-328是通過與ABCG2 3′-UTR區相應的MRE特異性結合,進而負調控ABCG2的表達。之后的研究[9]證實, miR-519c和miR-520h通過靶向作用于ABCG2 mRNA的3′-UTR區進而調控其蛋白的表達。Pelletier等[14]通過對乳腺癌患者ABCG2 3′-UTR區的檢測,發現miRNA可干擾其多態性,增強與3′-UTR區的結合作用進而影響乳腺癌的MDR。后續研究還發現更多的miRNA以類似機制調控耐藥相關蛋白的表達,如miR-451可負調控P-gP[11]、miR-326、miR-345和miR-7等,均可負調控多藥耐藥蛋白1(MRPl/ABCC1)[13, 28], 與乳腺癌對阿霉素、依托泊苷以及順鉑等化療藥物耐藥性的形成密切相關。miR-200c[29]和miR-298[30]在耐多柔比星乳腺癌細胞中均低表達,當提高其表達量時,可增加乳腺癌細胞對多柔比星的敏感性并降低MDR1/ABCB1及P-gP的表達,從而提高細胞內多柔比星藥物濃度。說明miRNA通過調節ABC轉運蛋白的表達,從而造成細胞內藥物外排、胞內藥物濃度下降而致乳腺癌細胞耐藥性增強。
細胞抗凋亡能力的提高是腫瘤細胞多藥耐藥產生的重要機制之一[31]。抗腫瘤藥物通過介導內源性或外源性凋亡反應而使腫瘤細胞死亡。miRNA可通過調控凋亡通路相關蛋白表達,進而影響乳腺癌細胞對化療藥物的敏感性。Bcl-2是重要的抗凋亡蛋白,其表達水平與乳腺癌耐藥細胞中相關的miRNA表達水平密切相關。Cittelly等[32]研究發現,Bcl-2的表達水平與miR-15a、miR-16的表達水平在MCF-7/HER2Δ16細胞中呈負相關,通過分別轉染miR-15a和miR-16后, Bcl-2的表達水平顯著降低,細胞對他莫昔芬的敏感性顯著增強;而通過沉默miR-15a和miR-16, 使Bcl-2的表達顯著增加,細胞的抗凋亡能力及對他莫昔芬的耐藥性均顯著增強,提示miR-15a、miR-16通過下調Bcl-2的表達,進而調控乳腺癌細胞MCF-7/HER2Δ16耐藥性的形成。另有研究[34]證實,miR-125b、miR-221、miR-222和miR-923在耐紫杉醇乳腺癌細胞中高表達,并發現miR-125b與Bcl-2的表達水平呈正相關,均高表達,其機制為miR-125b通過抑制促凋亡基因Bak1(Bcl-2 antagonist killer 1)的表達致細胞內Bak1的表達水平顯著降低,Bak1對Bcl-2的拮抗作用顯著降低,Bcl-2表達水平上調,細胞抗凋亡能力增加,對紫杉醇耐藥性增加。Ru等[33]發現miR-203可直接負調控細胞因子信號抑制因子3(SOCS3)的表達,進而降低了p53、p21、Bax等促凋亡蛋白的表達,使藥物介導的細胞凋亡作用明顯受抑制,引起乳腺癌細胞對順鉑的耐藥;而敲除乳腺癌細胞miR-203基因后,其對順鉑的敏感性顯著增加。而Kong等[34]的研究證實,miR-155通過調控轉錄因子FOX03a的表達使乳腺癌細胞對紫杉醇及多柔比星耐藥,而FOX03a的下游靶點均參與了細胞凋亡進程。Gong等[35]研究證實, miR-21表達上調使乳腺癌細胞對曲妥珠單抗治療耐藥,進一步研究證實其使同源性磷酸酶-張力蛋白基因(phosphatase and tensin homolog, PTEN)表達缺失,從而導致了腫瘤細胞的凋亡受抑制。以上研究均表明,在乳腺癌細胞中,miRNA可以通過調控細胞凋亡而介導乳腺癌細胞耐藥,這可能也是乳腺癌耐藥性形成的重要原因之一。
藥物代謝加快與乳腺癌患者對治療反應減弱關系密切[36]。細胞色素P450(CYP450)酶家族是催化藥物代謝反應的關鍵酶,超過80%的臨床常用藥物是經由CYP450代謝清除的。miRNA可以通過負調控藥物代謝酶CYP450家族中的CYP3A4、CYP1B1等成員的表達,進而調控乳腺癌的耐藥性。Tsuchiya等[37]在乳腺癌細胞MCF-7中證實miR-27b在轉錄后水平調節CYP1B1的表達,同時通過對24位乳腺癌患者癌組織及鄰近非癌組織的研究發現, miR-27b在乳腺癌組織中低表達,并伴隨CYP1B1蛋白的顯著高表達。另有研究證實, miR-27b[38]、miR-148a[39]抑制CYP3A4的表達。而CYP1B1[40]、CYP3A4[41]是乳腺癌對多西他賽耐藥的預測因子, CYP1B1、CYP3A4陽性乳腺癌對多西他賽的敏感性較陰性者顯著降低。而這些miRNA在乳腺癌耐藥細胞中均表達明顯降低,致CYP3A4、CYP1B1等表達增加,細胞內化療藥物迅速代謝,難以維持胞內有效濃度,進而引起細胞耐藥。
目前,乳腺癌干細胞(BCSC)的耐藥性已得到普遍的證實。而miRNA的異常表達能誘導BCSC的形成、有助于干細胞特性的維持,可能是BCSC耐藥性形成過程中的重要的調控因子。Shimono[42]和Iliopoulos[43]等研究均發現,miR-200家族在BCSC中表達水平顯著下降,而miR-200b的表達上調會阻斷BCSC的形成并干擾其特性的維持,從而顯著增強化療藥物對腫瘤生長的抑制作用; miR-200b在細胞內的表達水平下降則能顯著誘導BCSC的形成。miR-128[44]在耐藥性乳腺癌初始細胞中表達水平顯著下降,導致Bmi-1及ABCC5過表達,而顯示干細胞特性,并可抑制阿霉素介導的細胞凋亡和DNA損傷作用,產生耐藥;當上調BCSC中miR-128的表達水平時,能夠顯著逆轉BCSC對阿霉素的耐藥性。而Bmi-1過表達的細胞具有明顯的干細胞特性,并證明對順鉑及培美曲塞耐藥[45]。
如果能夠利用miRNA的檢測進行乳腺癌的診斷及其耐藥性的分析,對于乳腺癌的臨床治療具有重要意義。Zhu等[46]發現,幾乎所有體液中均可以檢測到miR-16、miR-145和miR-155的表達。而Lodes等[47]更進一步證實,在1mL血漿中即可獲得足夠的可供檢測的miRNA,同時可用于判斷是正常組織還是腫瘤組織。這些充分說明外周血液中miRNA表達譜的檢測對乳腺癌的診斷及耐藥性的預測是有可能實現的。
乳腺癌細胞耐藥性的形成與細胞內miRNA的異常表達密切相關,通過改變腫瘤細胞內相關miRNA的表達水平,逆轉乳腺癌的耐藥性是一種潛在的治療策略。誘導miRNA的再表達,多采用引入合成的短雙鏈RNA分子(即miRNA模擬物)的方式,在臨床前期動物實驗中,以病毒、脂質體及靶向納米顆粒為載體的轉染顯示了良好的作用及耐受性[48]。Kim等[49]將含有miR-145的腺病毒轉入人乳腺癌細胞株和乳腺癌小鼠模型體內,發現能有效抑制乳腺癌細胞生長,并且Ad-miR-145與5-Fu聯合使用療效明顯高于單獨使用時的療效。Bourguignon等[50]采用特異性的anti-miR-21序列沉默MCF-7細胞內過表達的miR-2l后,能有效阻斷HA-CD44介導的腫瘤細胞抗凋亡、耐藥等行為的形成。
[1] Yu X, Zhang X, Dhakal I B, et al. Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells[J]. BMC cancer, 2012, 12(1): 29.
[2] Bhat-Nakshatri P, Wang G, Collins NR, et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells[J]. Nucleic acids research, 2009, 37(14): 4850.
[3] Wickramasinghe NS, Manavalan TT, Dougherty SM, et al. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells[J]. Nucleic Acids Res, 2009, 37(8):2584.
[4] Katchy A, Edvardsson K, Aydogdu E, et al. Estradiol-activated estrogen receptor alpha does not regulate mature microRNAs in T47D breast cancer cells[J]. The Journal of steroid biochemistry and molecular biology, 2012, 128(3): 145.
[5] Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2):215.
[6] Zhao Y, Srivastava D. A developmental view of microRNA function[J]. Trends Biochem Sci, 2007, 32(4): 189.
[7] Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way[J]. Cell, 2009, 136(4): 586.
[8] Barbarotto E, Schmittgen T D, Calin G A. MicroRNAs and cancer: profile, profile, profile[J]. Int J Cancer, 2008, 122(5): 969.
[9] Li X, Pan YZ, Seigel GM, et al. Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like ABCG2+ cancer cells[J]. Biochem Pharmacol, 2011, 81(6): 783.
[10] Pan Y Z, Morris M E, Yu A M. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells[J]. Mol Pharmacol, 2009, 75(6): 1374.
[11] Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin[J]. Mol Cancer Ther, 2008, 7(7): 2152.
[12] To K K W, Robey R W, Knutsen T, et al. Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2[J]. Mol Cancer Ther, 2009, 8(10): 2959.
[13] Liang Z, Wu H, Xia J, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1[J]. Biochem Pharmacol, 2010, 79(6): 817.
[14] Pelletier C, Speed W C, Paranjape T, et al. Rare BRCA1 haplotypes including 3′UTR SNPs associated with breast cancer risk[J]. Cell Cycle, 2011, 10(1): 90.
[15] Jemal A, Bray F, Center M M, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69.
[16] Li L, Ji J, Wang J, et al. Attributable causes of breast cancer and ovarian cancer in china: reproductive factors, oral contraceptives and hormone replacement therapy[J]. Chin J Cancer Res, 2012, 24(1): 9.
[17] Ahmad A. Pathways to breast cancer recurrence. ISRN Oncol, 2013. 2013.
[18] Szakács G, Paterson J K, Ludwig J A, et al. Targeting multidrug resistance in cancer[J]. Nat Rev Drug Discov, 2006, 5(3): 219.
[19] Seruga B, Hertz P C, Le L W, et al. Global drug development in cancer: a cross-sectional study of clinical trial registries[J]. Ann Oncol, 2010, 21(4): 895.
[20] Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Res, 2005, 65(16): 7065.
[21] Ryu S, Joshi N, McDonnell K, et al. Discovery of novel human breast cancer microRNAs from deep sequencing data by analysis of pri-microRNA secondary structures[J]. PLoS One, 2011, 6(2): e16403.
[22] Gonzalez-Angulo A M, Morales-Vasquez F, Hortobagyi G N. Overview of resistance to systemic therapy in patients with breast cancer[J]. Adv Exp Med Biol, 2007, 608: 1.
[23] Barbarotto E, Schmittgen T D, Calin G A. MicroRNAs and cancer: profile, profile, profile[J]. Int J Cancer, 2008, 122(5): 969.
[24] Zhou M, Liu Z, Zhao Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression[J]. J Biol Chem, 2010, 285(28): 21496.
[25] Chen KG, Sikic BI. Molecular pathways: regulation and therapeutic implications of multidrug resistance[J]. Clin Cancer Res, 2012, 18(7): 1863.
[26] Clarke R, Leonessa F, Trock B. Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis[J]. WB Saunders, 2005, 32: 9.
[27] Zhu H, Wu H, Liu X, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells[J]. Biochem Pharmacol, 2008, 76(5): 582.
[28] Pogribny I P, Filkowski J N, Tryndyak V P, et al. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin[J]. Int J Cancer, 2010, 127(8): 1785.
[29] Chen J, Tian W, Cai H, et al. Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer[J]. Med Oncol, 2012, 29(4): 2527.
[30] Bao L, Hazari S, Mehra S, et al. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298[J]. Am J Pathol, 2012, 180(6): 2490.
[31] Hsu P C, Hung H C, Liao Y F, et al. Ornithine decarboxylase attenuates leukemic chemotherapy drugs-induced cell apoptosis and arrest in human promyelocytic HL-60 cells[J]. Leuk Res, 2008, 32(10): 1530.
[32] Cittelly D M, Das P M, Salvo V A, et al. Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors[J]. Carcinogenesis, 2010, 31(12): 2049.
[33] Ru P, Steele R, Hsueh E C, et al. Anti-miR-203 Upregulates SOCS3 Expression in Breast Cancer Cells and Enhances Cisplatin Chemosensitivity[J]. Genes Cancer, 2011, 2(7): 720.
[34] Kong W, He L, Coppola M, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer[J]. J Biol Chem, 2010, 285(23): 17869.
[35] Gong C, Yao Y, Wang Y, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer[J]. J Biol Chem, 2011, 286(21): 19127.
[36] Ingelman-Sundberg M, Rodriguez-Antona C. Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy[J]. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1460): 1563.
[37] Tsuchiya Y, Nakajima M, Takagi S, et al. MicroRNA regulates the expression of human cytochrome P450 1B1[J]. Cancer Res, 2006, 66(18): 9090.
[38] Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting[J]. Drug Metab Dispos, 2009, 37(10): 2112.
[39] Takagi S, Nakajima M, Mohri T, et al. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4[J]. J Biol Chem, 2008, 283(15): 9674.
[40] Desarnaud F, Geck P, Parkin C, et al. Gene expression profiling of the androgen independent prostate cancer cells demonstrates complex mechanisms mediating resistance to docetaxel[J]. Cancer Biol Ther, 2011, 11(2): 204.
[41] Sakurai K, Enomoto K, Matsuo S, et al. CYP3A4 expression to predict treatment response to docetaxel for metastasis and recurrence of primary breast cancer[J]. Surg Today, 2011, 41(5): 674.
[42] Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells[J]. Cell, 2009, 138(3): 592.
[43] Iliopoulos D, Lindahl-Allen M, Polytarchou C, et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells[J]. Mol Cell, 2010, 39(5): 761.
[44] Zhu Y, Yu F, Jiao Y, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5[J]. Clin Cancer Res, 2011, 17(22): 7105.
[45] Cortes-Dericks L, Carboni GL, Schmid RA, et al. Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed[J]. Int J Oncol, 2010, 37(2): 437.
[46] Zhu W, Qin W, Atasoy U, et al. Circulating microRNAs in breast cancer and healthy subjects[J]. BMC Res Notes, 2009, 2(1): 89.
[47] Lodes M J, Caraballo M, Suciu D, et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray[J]. PLoS One, 2009, 4(7): e6229.
[48] Castaeda C A, Agullo-Ortuo M T, Fresno Vara J A, et al. Implication of miRNA in the diagnosis and treatment of breast cancer[J]. Expert Rev Anticancer Ther, 2011, 11(8): 1265.
[49] Kim S J, Oh J S, Shin J Y, et al. Development of microRNA-145 for therapeutic application in breast cancer[J]. J Control Release, 2011, 155(3): 427.
[50] Bourguignon L Y W, Spevak C C, Wong G, et al. Hyaluronan-CD44interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells[J]. J Biol Chem, 2009, 284(39): 26533.