999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

論弗賴登塔爾數學教育思想的現實意義

2014-04-29 17:53:39喬愛萍
江蘇教育研究 2014年4期

喬愛萍

摘要:半個世紀前的弗賴登塔爾數學教育思想在今天看來依然歷久彌新。弗賴登塔爾教育思想的核心是“數學化”、“數學現實”與“有指導的再創造思想”,研究其內涵對今天的數學教育具有深遠的現實意義。

關鍵詞:弗賴登塔爾;數學化;數學現實:有指導的再創造

中圖分類號:G40-09 文獻標志碼:A 文章編號:1673-9094(2014)02-00510-05

弗賴登塔爾(1905-1990)是荷蘭著名的數學家和數學教育家,公認的國際數學教育權威,他于20世紀50年代后期發表的一系列教育著作在當時的影響遍及全球。雖歷經半個多世紀的歷史洗滌,但弗翁的教育思想在今天看來卻依然熠熠生輝,歷久彌新。今天我們重溫弗翁的教育思想,發現新課程倡導的一些核心理念,在弗翁的教育論著中早有深刻闡述。因此,領會并貫徹弗翁教育思想,對于今天的課堂教學仍然深具現實意義。身處課程改革中的數學教育同仁們,理當把弗翁的教育思想奉為經典來品味咀嚼,從中汲取豐富的思想養料,獲得教學啟示,并能積極踐行其教育主張。

弗賴登塔爾早年從事純粹數學研究,在李群和拓撲學等方面多有建樹,20世紀50年代后期開始關注數學教育,發表了140余種教育論著,其中最有影響的有《作為教育任務的數學》、《播種和除草》、《數學結構的教學法現象學》。第一本闡述了他對數學和數學教育的各種基本觀點,第二、第三本則可看成第一本的發展。弗翁在其代表作《作為教育任務的數學》中的核心思想歸納起來有三條,一是“數學化”,二是“數學現實”,三是“有指導的再創造”。

我們需要研究的是,弗翁的“數學化”、“數學現實”、“有指導的再創造”的思想內涵究竟是什么?對于今天課堂教學的現實意義究竟又在哪里?

一、“數學化”思想的內涵及其現實意義

弗賴登塔爾把“數學化”作為數學教學的基本原則之一,并指出:“……沒有數學化就沒有數學,沒有公理化就沒有公理系統,沒有形式化也就沒有形式體系。……因此數學教學必須通過數學化來進行?!盵1]弗翁的“數學化”,一直被作為一種優秀的教育思想影響著數學教育界人士的思維方式與行為方式,對全世界的數學教育都產生了極其深刻的影響。

何為“數學化”?弗翁指出:“籠統地講,人們在觀察現實世界時,運用數學方法研究各種具體現象,并加以整理和組織的過程,我稱之為數學化?!盵2]同時他強調數學化的對象分為兩類,一類是現實客觀事物,另一類是數學本身。以此為依據,數學劃分為橫向數學化和縱向數學化。橫向數學化指對客觀世界進行數學化,它把生活世界符號化,其一般步驟為:現實情境—抽象建?!话慊问交?。今天新授課倡導的教學模式就是遵循這四個階段進行的??v向數學化是指橫向數學化后,將數學問題轉化為抽象的數學概念與數學方法,以形成公理體系與形式體系,使數學知識體系更系統、更完美。

目前一些教師或許是教育觀念上還存在偏差,或許是應試教育大環境引發的短視功利心的驅動,常把數學化(橫向)的四個階段簡約為最后一個階段,即只重視數學化后的結果——形式化,而忽略得到結果的“數學化”過程本身。斬頭去尾燒中段的結果,是學生學得快但忘得更快。弗賴登塔爾批評道:這是一種“違反教學法的顛倒”。也就是說,數學教學絕不能僅僅是灌輸現成的數學結果,而是要引導學生自己去發現和得出這些結果。許多大家持同樣觀點,美國心理學家戴維斯就認為:在數學學習中,學生進行數學工作的方式應當與做研究的數學家類似,這樣才有更多的機會取得成功。笛卡爾與萊布尼茲說:“……知識并不是只來自于一種線性的,從上演繹到下的純粹理性……,真理既不是純粹理性,也不是純粹經驗,而是理性與經驗的循環?!盵3]康德說:“沒有經驗的概念是空洞的,沒有概念的經驗是不能構成知識的。”[4]

“紙上得來終覺淺,絕知此事要躬行”,“數學化”方式使學生的知識源自現實,也就容易在現實中被觸發與激活。“數學化”過程能讓學生充分經歷從生活世界到符號化、形式化的完整過程,積累“做數學”的豐富體驗,收獲知識、問題解決策略、數學價值觀等多元成果。

另一方面,“數學化”對學生的遠期與近期發展兼具重大意義。從長遠看,要使學生適應未來的職業周期縮短、節奏加快、競爭激烈的現代社會,使數學成為整個人生發展的有用工具,就意味著數學教育要給學生除知識外的更加內在的東西,這就是數學的觀念、用數學的意識。因為學生如果不是在與數學相關的領域工作,他們學過的具體數學定理、公式和解題方法大多是用不上的,但不管從事什么工作,從“數學化”活動中獲得的數學式思維方式與看問題的著眼點,把現實世界轉化為數學模式的習慣,努力揭示事物本質與規律的態度等等,卻會隨時隨地發生作用。

張奠宙先生曾舉過一例,一位中學畢業生在上海和平飯店做電工,從空調機效果的不同,他發現地下室到10樓的一根電線與眾不同,現需測知其電阻。在別人因為距離長而感到困難的時候,他想到對地下室到10樓的三根電線進行統一處理。在10樓處將電線兩兩相接,在地下室分三次測量,然后用三元一次方程組計算出了需要的結果。這位電工后來又做過幾次類似的事情,他也因此很快得到了上級的賞識與重視。這位電工解決問題的方法,并不完全是曾經做過類似數學題的方法,而是得益于他用數學的意識。在現實生活中,有了數學式的觀念與意識,我們就總想把復雜問題轉化為簡單問題,就總是試圖揭示出面臨問題的本質與規律,就容易經濟高效地處理問題,從而凸顯出卓爾不群的才干,進而提高我們工作與生活的品質。

從近期講,經歷“數學化”過程,讓學生親歷了知識形成的全過程,且在獲取知識的過程中,學生們要重建數學家發現數學規律的過程,其中探究中對前行路徑的自主猜測與選擇、自主分析與比較、在克服困境中的堅守與轉化、在發現解決問題的方法時獲得的智慧滿足與興奮、在歷經挫折后對數學式思維的由衷欣賞,以及由此產生的對于數學情感與態度方面的變化,無一不是“數學化”帶給學生生命成長的豐厚營養。波利亞說:只有看到數學的產生,按照數學發展的歷史順序或親自從事數學發現時,才能最好地理解數學。同時,親歷形成過程得到的知識,在學生的認知結構中一定處于穩固地位,記憶持久,調用自如,遷移靈活。從而十分有利于學生當下應試水平的提高。

除知識外,學生在“數學化”活動中將緘默地收獲到包含數學史、數學審美標準、元認知監控、反思調節等多元成果,這些內容不僅有益于加深學生對數學價值的認識,更有益于增強學生的內部學習動機,增強用數學的意識與能力,這絕不是只向學生灌輸成品數學所能達到的效果。

二、“數學現實”思想的內涵及其現實意義

新課程倡導引入新課時,要從學生的生活經驗與已有的數學知識處拋錨創設情境,這種觀點,早在半個世紀前的弗翁教育論著中已一再涉及。弗翁強調,教學“應該從數學與它所依附的學生親身體驗的現實之間去尋找聯系”,并指出,“只有源于現實關系,寓于現實關系的數學,才能使學生明白和學會如何從現實中提出問題與解決問題,如何將所學知識更好地應用于現實”。[5]弗翁的“數學現實”觀告訴我們,每個學生都有自己的數學現實,即接觸到的客觀世界中的規律以及有關這些規律的數學知識結構。它不但包括客觀世界的現實情況,也包括學生使用自己的數學能力觀察客觀世界所獲得的認識。教師的任務在于了解學生的數學現實并不斷地擴展提升學生的“數學現實”。

“數學現實”思想,讓我們知曉了創設情境的真正教學意圖及創設恰當情境對于教學的重要意義。首先,情境應該源于學生的生活常識或認知現狀,前者的引入方式可以擺脫機械灌輸概念的弊端,現實情境的模糊性與當堂知識聯系的隱蔽性更有利于學生進行“數學化”活動,有利于學生主意自己拿,方法自己找,策略自己定,有利于學生逐步積淀生成正確的數學意識與觀念,后者是學生進行意義建構的基本要求。其次,教師有效教學的必要前提,是了解學生的數學現實,一切過高與過低的、與學生數學現實不吻合的教學設計必定不會有好的教學效果。由此我們也就理解了新數運動失敗的一個重要原因,是過分拔高了學生的數學現實;同時也就理解了為什么在課改之初,一些課堂數學活動的“幼稚化”會遭到一些專家的詬病,就是因為沒有緊貼學生的數學現實貼船下篙。“如果我不得不把全部教育心理學還原為一條原理的話,我將會說,影響學習的唯一最重要因素是學習者已經知道了什么。”奧蘇貝爾的話恰好也道出了“數學現實”對教學的重要意義。

三、“有指導的再創造”思想的內涵及其現實意義

1.“有指導的再創造”中“再”的意義及啟示

弗賴登塔爾倡導按“有指導的再創造”的原則進行數學教學,即要求教師要為學生提供自由創造的廣闊天地,把課堂上本來需要教師傳授的知識、需要浸潤的觀念變為學生在活動中自主生成、緘默感受的東西。弗氏認為,這是一種最自然、最有效的學習方法。這種以學生的“數學現實”為基礎的創造學習過程,是讓學生的數學學習重復一些數學發展史上的創造性思維的過程。但它并非亦步亦趨地沿著數學史的發展軌跡,也讓學生在黑暗中慢慢地摸索前行,而是通過教師的指導,讓學生繞開歷史上數學前輩們曾經陷入的困境和僵局,避免他們在前進道路上所走過的彎路,濃縮前人探索的過程,依據學生現有的思維水平,沿著一條改良修正的道路快速前進。所以,“再創造”的“再”的關鍵是教學中不應該簡單重復當年的真實歷史,而是要結合當初數學史的發明發現特點,結合教材內容,更要結合學生的認知現實,致力于歷史的重建或重構。弗翁的理由是:“數學家從來不按照他們發現、創造數學的真實過程來介紹他們的工作,實際上經過艱苦曲折的思維推理獲得的結論,他們常常以‘顯而易見或是‘容易看出輕描淡寫地一筆帶過;而教科書則做得更徹底,往往把表達的思維過程與實際創造的進程完全顛倒,因而完全阻塞了‘再創造的通道。”[6]

我們不難看到,今天的許多常規課堂,由于課時緊、自身水平有限、工作負擔重、應試壓力大等原因,教師們常常喜歡用開門見山、直奔主題的方式來進行,按“講解定義—分析要點—典例示范—布置作業”的套路教學,學生則按“認真聽講—記憶要點—模仿題型—練習強化”的方式日復一日地學習。然而,數學課如果總是以這樣的流程來操作,學生失去的,將是親身體驗知識形成中對問題的分析、比較、對解決問題中策略的自主選擇與評判,對常用手段與方法的提煉反思的機會。杜威說:“如果學生不能籌劃自己解決問題的方法,自己尋找出路,他就學不到什么,即使他能背出一些正確的答案,百分之百正確,他還是學不到什么。”[7]其實,學習數學家的真實思維過程對學生數學能力的發展至關重要。張乃達先生說得好:“人們不是常說,要學好學問,首先就要學做人嗎?在數學學習中,怎樣學習做人?學做什么樣的人?這當然就是要學做數學家!要學習數學家的‘人品。而要學做數學家,當然首先就要學習數學家的眼光!”[8]這只能從數學家“做數學”的思維方式中去學習。

德摩根就提倡這種“再創造”的教學方式。他舉例說,教師在教代數時,不要一下子把新符號都解釋給學生,而應該讓學生按從完全書寫到簡寫的順序學習符號,就像最初發明這些符號的人一樣。龐加萊認為:“數學課程的內容應完全按照數學史上同樣內容的發展順序展現給讀者,教育工作者的任務就是讓孩子的思維經歷其祖先之所經歷,迅速通過某些階段而不跳過任何階段?!盵9]波利亞也強調學生學習數學應重新經歷人類認識數學的重大幾步。

例如,從1545年卡丹討論虛數并給出運算方法,到18世紀復數廣為人們接受,經歷了200多年時間,其間包括大數學家歐拉都曾認為這種數只存在于“幻想之中”。教師教授復數時,當然無須讓學生重復當初人類發明復數的艱辛漫長的歷程,但可以把復數概念的引入,也設計成當初數學家遇到的初始問題,即“兩數的和是10,積是40,求這兩數”,讓學生面臨當初數學家同樣的困窘。這時教師讓學生了解從自然數到正分數、負整數、負分數、有理數、無理數、實數的發展歷程,以及數學共同體對數系擴充的規則要求。啟發學生,對于前面的每一種數都找到了它的幾何表征并研究其運算,那么復數呢,能否有幾何表征方式?復數的運算法則又是什么樣的?……這樣的教學,既避免了學生無方向的低效摸索,又讓學生在教師的科學有效的引導下,像數學家一樣經歷了數學知識的創造過程。在這一過程中,學生獲得的智能發展,遠比被動接受教師傳授來得透徹與穩固。正如美國諺語所說:我聽到的會忘記,看到的能記住,唯有做過的才入骨入髓。

2.“有指導的再創造”中“有指導”的內涵及現實意義

弗翁認為,學生的“再創造”,必須是“有指導”的。因為,學生在“做數學”的活動中常處于結論未知、方向不明的探究環境中。若放任學生自由探究而教師不作為,學生的活動極有可能陷入盲目低效或無效境地。打個比方,讓一個盲人靠自己的摸索到他從來沒有去過的地方,他或許花費太多的時間,碰到無數的艱辛,通過跌打滾爬最終能到達目的地,但更有可能摸索到最后還是無功而返。如果把在探索過程中的學生比喻為看不清知識前景的盲人,教師作為一個知識的明眼人,就應該始終站在學生身后的不遠處。學生碰到溝壑,教師能上前牽引他;當他走反了方向時,上前把他指引到正確的道路上來,這就是教師“有指導”的意義。另外,并不是學生經過數學化活動就能自動生成精致化的數學形式定義。事實上,數學的許多定義是人類經過上百年、數千年,通過一代代數學家的不斷繼承、批判、修正、完善,才逐步精致嚴謹起來的,想讓學生自己通過幾節課就生成出形式化概念是不可能的。所以說,學生的數學學習,更主要還是一種文化繼承行為。弗翁強調“指導再創造意味著在創造的自由性與指導的約束性之間,以及在學生取得自己的樂趣和滿足教師的要求之間達到一種微妙的平衡”[10]。當前教學中有一種不好的現象,即把學生在學習活動中的主體地位與教師的必要指導相對立,這顯然與弗翁的思想相背離。當然,教師的指導最能體現其教學智慧,體現在何時、何處、如何介入到學生的思維活動中。

(1)如何指導——用元認知提示語引導。在“做數學”的活動中,對學生啟發的最好方式是用元認知提示語,教師要根據探究目標隱蔽性的強弱,知識目標與學生認知結構潛在距離的遠近,設計暗示成分或隱或顯的元認知問題。一個優秀的教師一定是善用元認知提示語的教師。

(2)何時指導——在學生處于思維的迷茫狀態時。不給學生充分的活動時空,不讓學生經歷一段艱難曲折的走彎路過程,教師就介入到活動中,這不是真正意義上的“數學化”教學。在教師的過早干預下,也許學生知識、技能學得快一些,但學生學得快忘得更快。所以,教師只有在學生心求通而不得時點撥,在學生的思維偏離了正確的方向時引領,才能充分發揮師生雙方的主觀能動性,讓學生在挫折中體會出數學思維的特色與數學方法的魅力。

(3)在何處指導——在關于知識的知識方面。相比于知識的學習,關于如何獲取知識的知識對于人的發展意義更為重要。比如筆者在“參數方程的意義”一課中,當學生得出了斜拋物體的運動方程時,筆者提出:你以前見過類似方法嗎?引導學生提取出曾經見過的參數方程x=rcost、y=rsint。進而提問:“你認為本題的方法有推廣,一般化的價值嗎,為什么?”通過這樣的問題,引導學生反思數學人的價值追求,反思我們研究參數方程的必要性,進而讓學生悟出:在數學中,在生活中,如果我們經常遇到一個對象,如果它有普遍的運用價值,我們就要研究它。通過一些問題串的提出,引導學生不僅關心“知道了什么知識”,更要引導學生關心知識是“怎么形成的”,“怎么知道的”,“為什么要研究它們”。在思維的岔口處,教師指導學生要用數學美導航,在等價化歸的行為背后,教師要點化出數學人思維經濟的特色,引導學生對于如何進行數學思考進行再思考。通過指導學生回顧“做數學”的過程,深究活動中涉及的知識、方法、思路、策略,“學生的理解才可能從一個水平升華到更高水平”[11]。

品讀弗翁的教育論著,相信每一位閱讀的同仁都有開卷有益、茅塞頓開之感,它之于我們,實在是一部精神大餐,從中可擴展我們的眼界,澄清認識上的誤區,提升我們的實踐智慧,幫助我們更透徹地領會并在教學中更好地貫徹新課程理念。

參考文獻:

[1][7]劉靜,楊新鵬.談數學教學中的“數學化”[J].聊城大學學報(自然科學版),2005(2).

[2]曹一鳴.數學教學中的“生活化”與“數學化”[J].中國教育學刊,2006(2).

[3][4]Lave J,Wenger E.Situational Learning:Legitimate Peripheral Participation[M].Cambridge:Cambridge University Press,1991:1.

[5]戚紹斌.弗賴登塔爾數學教育思想的哲學基礎[J]武漢教育學院學報,1999(12).

[6]弗賴登塔爾教授關于數學教育的問答[J].唐瑞芬,譯.數學教學,1988(4).

[8]張乃達.思維 觀念 文化——張乃達數學教育論文選[M].南京:鳳凰出版社,2012:217.

[9]徐章韜,汪曉勤,梅全雄.認知的歷史發生原理及其教學工程化[J].數學教育學報,2012(1).

[10]鮑建生,徐斌艷.數學教育研究導引(二)[M].南京:江蘇教育出版社,2003:190.

[11]張曉拔.數學教學要重視培養學生反思習慣[J].數學教育學報,2008(6).

責任編輯:楊孝如

Freudenthals Mathematics Education Idea and Its Realistic Significance

QIAO Ai-ping

(Qingjiang Middle School, Huaian 223001, China)

Abstract: Freudenthals mathematics education idea of half a century ago is still new and fashionable today, the core of whose idea is mathematization, mathematical reality and directed re-creation ideology. A study of its connotation has profound realistic significance to todays mathematics education.

Key words: Freudenthal; mathematization; mathematical reality; directed re-creation

主站蜘蛛池模板: 国产一区二区网站| 人人妻人人澡人人爽欧美一区| 波多野结衣久久精品| 国产精品页| 99热这里只有免费国产精品| 亚洲精品手机在线| 亚洲黄色成人| 又污又黄又无遮挡网站| 亚洲免费播放| 午夜一区二区三区| 91麻豆精品国产91久久久久| 日本国产精品| 精品一区二区三区中文字幕| 国产欧美网站| 亚洲综合日韩精品| 日韩av手机在线| 青青操视频免费观看| 伊人久久青草青青综合| 欧日韩在线不卡视频| 国产无人区一区二区三区| 精品国产福利在线| 99在线免费播放| 精品人妻AV区| 精品一区二区无码av| 国产欧美精品一区二区| 91午夜福利在线观看| 久久久噜噜噜久久中文字幕色伊伊| 久久精品人人做人人| 国产黄色免费看| 欧美亚洲综合免费精品高清在线观看| 黄色三级网站免费| 欧美成a人片在线观看| 黄色在线网| 老司机精品99在线播放| 中文字幕人妻av一区二区| 2021天堂在线亚洲精品专区| 最新亚洲av女人的天堂| 无码日韩人妻精品久久蜜桃| 免费人欧美成又黄又爽的视频| 大陆国产精品视频| 亚洲日本中文字幕乱码中文| 欧洲日本亚洲中文字幕| 亚洲av无码成人专区| 国产黄色爱视频| 中文字幕在线观看日本| 国内黄色精品| 久久网欧美| 精品成人一区二区| 久久国产精品无码hdav| 91免费国产在线观看尤物| 欧美在线观看不卡| 欧美在线免费| 亚洲色精品国产一区二区三区| 欧美激情福利| 亚洲欧美成aⅴ人在线观看| 精品国产自| 日韩欧美色综合| 欧美、日韩、国产综合一区| av在线人妻熟妇| 亚洲AV无码乱码在线观看裸奔| 亚洲美女视频一区| 亚洲第七页| 日韩精品亚洲一区中文字幕| 嫩草在线视频| 精品无码专区亚洲| 国产女人水多毛片18| 色综合日本| 国产高潮视频在线观看| 欧美成人国产| 午夜高清国产拍精品| 丁香婷婷激情综合激情| 色哟哟国产精品| 久久五月天综合| 欧类av怡春院| 美女一级毛片无遮挡内谢| 国产亚洲精久久久久久久91| 免费观看精品视频999| 日韩精品免费一线在线观看 | 1769国产精品视频免费观看| 亚洲国产精品无码AV| 毛片在线播放网址| 欧美精品xx|