摘要:為研究某銻礦區土壤質量現狀,對該銻礦區土壤進行布點取樣,分析了Sb、Cd、Cr、Cu、Zn、Pb、Hg、Ni、As 9種元素含量,并以單因子污染指數、內梅羅指數及潛在生態風險指數對土壤重金屬污染狀況進行了評價。結果表明,采用內梅羅指數法對該銻礦區土壤重金屬污染程度進行評價時,各采樣點的內梅羅指數均小于0.7,屬安全狀態;采用潛在生態風險指數法對該銻礦區土壤重金屬污染情況進行潛在生態風險評估時,各采樣點綜合潛在生態風險指數均小于150,屬輕度污染。
關鍵詞:重金屬;污染程度;潛在生態風險;銻礦區
中圖分類號:X53 文獻標識碼:A 文章編號:0439-8114(2014)04-0781-03
Heavy Metal Pollution in the Soil and Potential Ecological Risk Assessment of
an Antimony Mine
ZHANG Wei, GE Jian-tuan, ZHANG Ji-ping
(School of Geography and Environmental Science, Northwest Normal University,Lanzhou 730070,China)
Abstract: To study the status of soil quality in an antimony mine soil distribution was sampled and the elements contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni, As were analyzed using single factor pollution index, Nemerow index and potential ecological risk index. The heavy metal contamination of soils were evaluated. The results showed that Nemerow index for each sampled point is less than 0.7, meaning a clean state. When potential ecological risk assessment was conducted, the sampled point was less than 150, belonging to light pollution.
Key words: heavy metal; pollution degree; potential ecological risk; antimony mine
礦區土壤重金屬污染及生態修復是國內外環境領域關注的研究熱點之一[1-5]。礦產采選過程中產生的礦石粉塵進入環境,會在周圍土壤中積累,甚至轉化成毒性更強的化合物(如甲基化合物),并通過食物鏈的作用在人體內富集導致中毒,危害人類健康。此次所研究銻礦采礦選用分層崩落的方法,使用局扇壓抽混合式通風設備;選礦采用“破碎-磨礦-浮選”工藝,活化劑選用傳統工藝的Pb(NO)2。通過對銻礦區進行土壤采樣分析,研究了該銻礦區土壤重金屬污染程度,并進行了潛在生態風險評價,以期為礦區生態環境影響評價及閉礦期生態修復提供參考依據。
1 材料與方法
1.1 土壤樣品采集與處理
1.2 測定方法
2.2 評價結果
潛在生態危害指數法評價結果顯示,4個采樣點各重金屬的潛在生態危害程度均為輕度危害,綜合潛在生態危害也均屬于輕度危害,礦區土壤潛在生態危害由高到低依次為選礦場下游100 m處農田、尾礦庫下游150 m處農田、礦山林地、尾礦庫下游約1 km處村莊農田。
參考文獻:
[1] 許雅玲,歐陽通,陳江獎.某銅礦區土壤重金屬污染狀況研究[J].環境科學與技術,2009,32(11):146-151.
[2] 李 靜,俞天明,周 潔,等.鉛鋅礦區及周邊土壤鉛、鋅、鎘、銅的污染健康風險評價[J].環境科學,2008,29(8):2327-2330.
[3] MACHENDER G,DHAKATE R,PRASANNA L,et al. Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad,India[J]. Environment Earth Sciences, 2010,63(5):945-953.
[4] ZHUANG P,ZOU B, LI N Y,et al. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong,China: Implication for human health[J]. Environmental Geochemistry and Health, 2009,31(6):707-715.
[5] SORIANO-DISLA J M, SPEIR T W, G?魷MEZ I, et al. Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils[J]. Water, Air, and Soil Pollution,2010,213:471-483.
[6] HJ/T 166-2004,土壤環境監測技術規范[S].
[7] GB/T 17134-1997,土壤質量總砷的測定 二乙基二硫代氨基甲酸銀分光光度法[S].
[8] GB/T 17136-1997,土壤質量總汞的測定 冷原子吸收分光光度法[S].
[9] GB/T 17137-1997,土壤質量總鉻的測定 火焰原子吸收分光光度法[S].
[10] GB/T 17138-1997,土壤質量銅、鋅的測定 火焰原子吸收分光光度法[S].
[11] GB/T 17140-1997,土壤質量鉛、鎘的測定 KI-MIBK 萃取火焰原子吸收分光光度法[S].
[12] GB/T 17139-1997,土壤質量鎳的測定 火焰原子吸收分光光度法[S].
[13] 林 琳,張海燕,張 軍,等.微波消解試樣-原子熒光光譜法測定土壤中砷和銻[J].理化檢驗(化學分冊),2010,46(10):1155-1157.
[14] 郭笑笑,劉叢強,朱兆洲,等.土壤重金屬污染評價方法[J].生態學雜志,2011,30(5):889-896.
[15] GB 15618-1995,土壤環境質量標準[S].
[16] FOWLER B A, GOERING P L. Antimony[M]. New York: VCH, Weinheim, 1991.
[17] HAKANSON L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research,1980, 14(8):975-1001.
[18] 徐爭啟,倪師軍,庹先國,等.潛在生態危害指數法評價中重金屬毒性系數計算[J].環境科學與技術,2008,31(2):112-115.
[19] 賈振邦,梁 濤,林健枝,等.香港河流重金屬污染及潛在生態危害研究[J].北京大學學報(自然科學版),1997,33(4):485-492.