王曉琳,賀鋒濤,賈瓊瑤,劉 佳
基于光纖振動的激光散斑控制
王曉琳,賀鋒濤*,賈瓊瑤,劉 佳
(西安郵電大學電子工程學院,西安710061)
散斑噪聲的存在使得圖像灰度劇烈變化,降低了圖像分辨率,影響成像質量。為了控制散斑噪聲,使用波長為405nm的激光作為顯微系統照明光源,利用音圈電機振動光纖,通過對拋光玻璃顯微成像,用CCD圖像采集卡采集圖像后進行了散斑噪聲對比度分析。結果表明,在光纖振動幅度不變、振動頻率在4Hz~55Hz內逐漸增加時,圖像散斑對比度在0.0326~0.1197范圍內逐漸變小;當頻率大于51Hz時,圖像散斑對比度曲線趨于平穩且對比度在0.0326處獲得了最小值,圖像清晰,達到良好的散斑控制。
激光光學;激光散斑;散斑對比度;頻率
激光具有方向性好、亮度高、單色性和相干性好的特性,在精密測量和圖像顯示[1-5]等領域得到廣泛應用。但由于激光的強相干性,成像時會形成散斑噪聲,使得圖像灰度劇烈變化,隱藏圖像的細節信息,影響成像質量,降低了圖像的清晰度和分辨率[6-7],所以需要對散斑進行控制。如何減弱散斑噪聲的影響一直是人們研究的問題[8]。不少科研工作人員提出了降低散斑對比度的方法,如利用不同波長的光源照明來降低激光相干性[9],從而減弱散斑;利用脈沖激光的疊加、移動散射體等方法來降低散斑[8]。這些方法雖然減弱散斑的影響,但系統較為復雜。作者采用405nm的激光作為系統的照明光源,結合CCD圖像采集卡對樣品圖像進行采集,在采集過程中利用音圈電機振動光纖來消除由于激光相干性所產生的散斑噪聲,有效地降低了散斑對比度。這種方法成本低、精度高、結構簡單、且實用可行,使得本系統易于實現。
光學顯微鏡的分辨率由顯微物鏡的分辨率、CCD攝像頭的分辨率和圖像采集卡的分辨率決定;但主要取決于顯微物鏡的分辨率[10]。由瑞利判據可知,物鏡的分辨率由d=0.61決定,即與照明光源的波長成正比,與物鏡的數值孔徑(numericalaperture,NA)dNA成反比。因此,提高分辨率則可選用短波長的光源或者提高數值孔徑[11]。該系統選用顯微鏡物鏡的數值孔徑dNA=0.65保持不變,采用短波長為405nm的激光作為光源,其理論分辨率可達380nm。但由于散斑的存在,影響了成像的質量,所以作者利用光纖振動的方法對激光散斑進行控制。
本系統由三部分組成,即光學顯微鏡、CCD圖像采集和微型計算機,如圖1所示。其基本原理為:405nm的激光通過振動的光纖傳輸到聚光鏡上,使激光匯聚在孔徑光闌中,當從孔徑光闌出射后,經一組聚光透鏡匯聚,通過分光鏡和輔助物鏡聚焦在顯微物鏡的焦平面,物鏡使光束變為平行光均勻照射在測量樣品上,從樣品表面反射回的帶有樣品信息的光經顯微鏡、輔助物鏡后,被分光鏡反射,反射光束經棱鏡后呈倒立放大的實像,通過目鏡接收放大后,由CCD攝像頭在CCD顯示器上成像;最終顯示在計算機中[12]。

Fig.1 Schematic diagram
該系統采用振動光纖的方法減小散斑噪聲,即將一個音圈電機固定在光纖上,通過音圈電機振動帶動光纖振動,當405nm的激光經過振動的光纖時,其相位發生變化,即破壞了激光的強相干性,從而起到減小散斑噪聲的作用。
用對比度[13]作為激光散斑控制的評價標準。實驗裝置選用40×的顯微物鏡,CCD攝像頭像素為786×576以及0.65的數值孔徑。當數值孔徑不變時,選用405nm激光作為系統的照明光源,分別采集音圈電機振動頻率在4Hz~55Hz時的拋光玻璃表面散斑圖像,如圖2所示,共52幅。利用公式(其中,I是散斑圖樣的強度)[14]通過MATLAB軟件計算其對比度。計算結果如表1所示。

Fig.2 The speckle image of polishing glass surface under different frequency

Table 1 Speckle contrast
通過MATLAB軟件,對采集到的多幅顯微圖像進行散斑對比度計算及對比度曲線擬合,得到音圈電機振動幅度不變頻率變化時散斑對比度曲線,如圖3所示。可以看出,隨著振動頻率在4Hz~55Hz范圍內增加時,圖像散斑對比度在0.0326~0.1197之間逐漸變小,在5Hz時,其對比度最大,屏幕上會顯示無規則分布的散斑噪聲,如圖2中的2所示。當頻率大于51Hz時,圖像散斑對比度曲線趨于平穩,在0.0326對比度處獲得了最小值,具有良好的散斑消除效果,即通過頻率的控制完成了對激光散斑的控制。

Fig.3 Contrast curve with the frequency change
為了進一步說明散斑控制的效果,選擇最大對比度和最小對比度的兩幅散斑圖像,即5Hz和51Hz進行光強分析,如圖4和圖5所示。

Fig.4 Intensity distribution of speckle pattern of2 of Fig.2

Fig.5 Intensity distribution of speckle pattern of51 of Fig.2
從圖4中頻率為5Hz時散斑圖的光強分布可以看出,光強的起伏較大,在0.2~0.8范圍內波動,多處區域出現尖峰,對應圖2中的2,其對比度為0.1197,驗證了頻率較小時,圖像會出現無規則分布的散斑噪聲。圖5為51Hz時散斑圖的光強分布,其光強起伏較小,集中在0.35~0.5范圍內波動,只有個別區域出現尖峰,其對比度為0.0326,使顯微圖像達到5%以下的散斑對比度,低于人眼對圖像的分辨,說明散斑噪聲得到了很好的控制。
用波長為405nm的激光作為激光顯微成像系統的照明光源,對散斑消除前后的DVD-R盤片顯微成像圖像進行采集對比,如圖6所示。

Fig.6 a—DVD-R disk image when existing speckle noise b—DVD-R disk image without speckle noise
圖6a為光纖靜止時采集到的DVD-R盤片圖像,可以看出,DVD-R由于散斑的影響無法分辨。當用音圈電機振動光纖后,在頻率為51Hz時,采集到如圖6b所示的DVD-R盤片圖像,由于光纖受到振動,破壞了激光的強相干性,起到了消除圖像散斑的作用。可以看出,此時DVD-R盤片圖像的信息點能清晰觀察。
該系統中光學顯微鏡的照明光源選用了405nm的短波長激光,當數值孔徑不變時,能有效地提高系統分辨率,通過振動音圈電機帶動光纖振動的方法來減弱由于采用激光作為光源時所產生的散斑,并對拋光玻璃表面在振動電機不同頻率下采集的圖像進行對比度分析。結果表明,當幅度不變而頻率提高時,散斑的消除效果越來越理想,但在頻率提高到一定閾值時,對比度值基本不變,即散斑消除效果趨于穩定,實現了不同頻率下對激光散斑的控制,該方法成本低、靈敏度高、結構簡單,這對激光散斑消除具有重要意義。
[1] JEONG Y J,PYO Y,IWASHITA Y,et al.High-precision threedimensional laser measurement system by cooperative multiple mobile robots[C]//System Integration,2012 IEEE/SICE Internation-al Symposium.Tokyo,Japan:IEEE,2012:198-205.
[2] WANG X D,LIUW Y,JIN Y H,et al.Laser radar image acquisition and display integrated system based on DSP and CPLD[J].Optics and Precision Engineering,2004,12(2):190-194(in Chinese).
[3] BIY,SUN Zh P,LIRN,et al.High power blue Nd∶YAG laser by intracavity summing frequency[J].Optics and Precision Engineering,2005,13(1):16-21(in Chinese).
[4] YANG Ch J,ZHOU J Zh,ZHANG Y K,et al.Study on calculation of minimum laser energy of sheet metal deformation by laser shock forming[J].Optics and Precision Engineering,2006,14(3):396-401(in Chinese).
[5] YIN R Y,TONG Y,ZHAOY Q,et al.Optical Doppler technologies for micro-circulation measurement and their recent progress[J].Optical Technique,2013,39(2):112-123(in Chinese).
[6] YU G,WANG Sh G,YUN J H,et al.Technology of digital speckle pattern interferometry and its applications[J].Laser Technology,2002,26(3):237-240(in Chinese).
[7] ZHANG Y P,WANG K F.Application of LabVIEW and MATLAB in ESPI image processing[J].Laser Technology,2009,33(6):582-585(in Chinese).
[8] LIX,LIUW Q,TIAN ZH,et al.Speckle contrast reduction of laser display system[J].Chinese Journal of Liquid Crystals and Displays,2008,23(2):153-156(in Chinese).
[9] JIA Q Y,HE F T.Speckle homogenization in laser projection display[J].Laser Technology,2013,37(3):400-403(in Chinese).
[10] ZHANG D L,HE F T,FENG X Q,et al.High-resolution optical micro-survey system with blue illuminating scurce[J].Applied Optics,2005,26(3):57-59(in Chinese).
[11] HE F T,LIU J.Analysis on the speckle contrast of the microscopic image of laser[J].Journal of Northwest University(Natural Science Edition),2012,42(3):377-380(in Chinese).
[12] HE F T,LIU J,WANG Z,et al.The micro-measurement system of high-resolution 405nm laser[J].Journal of Northwest University(Natural Science Edition),2011,41(4):603-605(in Chinese).
[13] JANAKA S,REGE A,LIN.Laser speckle contrast imaging:theory,instrumentation and applications[J].IEEE Reviews in Biomedical Engineering,2013(6):99-110.
[14] REN Sh Y,ZHANG Zh,LIU G D,et al.Restraining speckle of laser imaging system in accurate measurement[J].Optics and Precision Engineering,2007,15(3):331-336(in Chinese).
Laser speck le control based on optical fiber vibration
WANGXiaolin,HEFengtao,JIA Qiongyao,LIUJia
(College of Electronic Engineering,Xi’an University of Post and Telecommunications,Xi’an 710061,China)
The image gray can be changed by severely the speckle noise,so the image resolution can be reduced and the image quality was decreased.In order to control the speckle noise,using a laser at405nm wavelength as light source of the microscopic imaging system and a voice coil motor vibrating the optical fiber,images was obtained by the polished lens and captured with a CCD image acquisition card,the speckle noise contrasts were studied.The results show that when the fiber vibration amplitude is stable and the vibration frequency is increased from 4Hz to 55Hz,the image speckle contrasts change in the range of0.0326~0.1197 and the overall trend gradually becomes smaller.The image speckle contrast levels off when the frequency is more than 51Hz.When the speckle contrast reaches the minimum at0.0326,the image is clear and the laser imaging speckle can be controlled satisfactorily.
laser optics;laser speckle;speckle contrast;frequency
TN249
A
10.7510/jgjs.issn.1001-3806.2014.02.007
1001-3806(2014)02-0177-04
國家自然科學基金資助項目(61201193)
王曉琳(1987-),女,碩士研究生,主要從事激光成像方面的研究。
*通訊聯系人。E-mail:hefengtao@xupt.edu.cn
2013-07-08;
2013-08-20