康鳳明,徐淑波,2,潘憲平
(1.山東宏康機械制造有限公司,山東 泰安271000;2.山東大學(xué) 機械工程學(xué)院,山東 濟南250061)
對于相對壁厚δ/D(δ——管壁厚,D——管子直徑)較薄,相對彎曲半徑R/D(R——管子彎曲半徑)較小,而工件精度要求較高的管件,目前彎管工藝均采用有芯彎曲。
某廠生產(chǎn)的自行車架下管彎曲部分如圖1 所示,橢圓度(D 大-D ?。?D原×100%≤3%,屬于上述難度較大的彎曲管件。雖然曾用無芯雙輪彎曲,充砂彎曲,均達(dá)不到要求,最后用有芯彎曲法彎曲成功,且直徑偏差控制在0.5mm 左右。

圖1 自行車架下管彎曲部分
有芯彎管如圖2 所示,芯棒1 與轉(zhuǎn)軸5 均固定在工作臺上,彎曲模3 可繞轉(zhuǎn)軸5 轉(zhuǎn)動。彎管時,先將管子2 用固定塊4 固定于彎曲模3上,再在彎曲模3上施加一力矩M,使之產(chǎn)生轉(zhuǎn)動,管子慢慢在柔性芯頭上抽動,繞在彎曲模上,所以,有些單位稱此法為纏繞式彎管。目前大部分廠家都采用此法,只不過所用動力、裝夾方式或控制方式不同而已[1-4]。

圖2 有芯彎管
有芯彎管中,芯棒與彎曲模形狀是保證彎管質(zhì)量的關(guān)鍵,目前所見到和有關(guān)資料介紹芯棒形狀[5-8]均如圖3 所示,伸入管子端帶有圓角r。有的取r=Φ/2,即端部的半球形。芯棒直徑的取值一般為管子內(nèi)徑的97%。實際上,在保證芯棒能插入管子的前提下,Φ越大越好。圖2 所示管件內(nèi)徑的97%計算Φ 應(yīng)為35.4mm。實際中Φ=36mm,為管件內(nèi)徑的98.6%,芯棒插入后間隙為0.5mm,就能保證芯棒較容易地插入管內(nèi),端部也取半球形。此芯棒與合理形狀的彎曲模配合,芯棒伸入長度調(diào)整合理,操作仔細(xì),也能保證直徑偏差不大于1mm。但稍有不慎,直徑偏差仍可能超過1mm,且彎曲時芯棒端部與管內(nèi)壁接觸面積太小,因而接觸應(yīng)力太大,彎曲終止時管壁上有一明顯凸起,與剛彎過的地方出現(xiàn)明顯的直徑變化,在約10mm 的范圍內(nèi),直徑突變近1mm,雖未超差,但嚴(yán)重影響外觀質(zhì)量。
將芯棒改為圖4 形狀,可大大減少直徑偏差,防止彎曲終止時管壁上的明顯凸起。芯棒直徑Φ 仍為36mm,自C-C 截面外由原半球形改為上側(cè)為R=110+40-1.75=148.25,下側(cè)為直線,延長至與R 交點,過管子彎曲中心且垂直于彎曲平面的截面AA,B-B 上半r=18,而下半部則為橢圓的一部分。改動目的是在保證管子彎曲后能抽芯棒的前提下,使芯棒與管子彎曲后的理想形狀能獲得最大接觸面,以此防止管子的變形。

圖3 芯棒形狀

圖4 修改后的芯棒形狀

圖5 兩種芯棒工作情況的對比圖
兩種芯棒工作情況對比如圖5 所示,其中虛線為改革后芯棒工作時在管內(nèi)情況,實線為原芯棒。從圖中可以看出,較理想的彎曲應(yīng)是管子在D1點受沿管子方向的純拉力,發(fā)生拉伸變形。在D2點受純壓力,發(fā)生壓縮變形。但是,施加在彎曲模上的是一力矩M,通過固定塊彎曲模槽及已彎曲的管壁把力傳遞到變形處。D1點所受并非純拉力,還有徑向分力。當(dāng)管子相對壁厚δ/D 較小時,D1點無芯棒支撐在該點徑向縮小而貼在芯棒上。實際變形點已不在D1點而是在C1點左右附近。原來形狀芯棒在C1-C2截面上與管內(nèi)壁是先線接觸(不考慮其變形),為一半圓形。因而接觸應(yīng)力太大,彎曲終止時在C1點呈現(xiàn)明顯凸起。而在C1-C2右面不遠(yuǎn)的E1-E2截面這時還受一定切向力及徑向力,要再變得稍微細(xì)一點。改革后的芯棒彎曲時與管內(nèi)壁有較大的接觸面,接觸應(yīng)力較小,不會引起直接突變。且能在剛彎曲過的E1左右產(chǎn)生一徑向反力,防止管子徑向變形,允許其沿彎曲半徑切向變形。若彎曲終止時管壁不再回彈,管內(nèi)壁形狀就是要求的理想形狀。其壁厚變薄量較小,當(dāng)然管壁外面也接近理想形狀。由于C1-F 段均能防止其變形回彈,而F 點離變形區(qū)又較遠(yuǎn),所以基本不會再發(fā)生復(fù)彈,能獲得較理想的最終形狀。采用上述形狀芯棒與合理形狀彎曲模槽配合,彎曲管件直接偏差小于0.5mm,完全可滿足一般工程要求。
有了形狀合理的芯棒,還需形狀合理的彎曲模配合,才能彎制出高質(zhì)量的管件[9-11]。按照圖1 所示彎制管件,一開始采用芯棒Ф=36mm,彎曲模槽為一半圓形,R=20mm,為管子外半徑。但是沒有成功,全都在管子受壓側(cè)出現(xiàn)很大褶皺,有幾根還在受拉面突然斷裂,并且所需彎曲力矩也明顯大了許多。通過反復(fù)分析研究,認(rèn)為原因如下:由圖5 可知,彎曲時管壁作用在芯棒上的力為摩擦力與正壓力,其結(jié)果對芯棒產(chǎn)生一下壓力。而芯棒在圖5 中的D2點即圖6 中的D 點與彎曲模相互作用對管壁產(chǎn)生厚度方向的壓力,這時該點取出的單元件如圖7,δx是由彎曲引起的軸向壓應(yīng)力,δz為芯棒與彎曲模對管壁產(chǎn)生的正應(yīng)力,δy為軸向壓應(yīng)力,徑向受壓而管子又不能產(chǎn)生切向變形引起的切向壓應(yīng)力。δz的存在使管壁不能在彎曲時自由度變厚,而迫使管子的實際應(yīng)變中性層下移。當(dāng)δz大到一定程度,會出現(xiàn)三向壓應(yīng)力接近相等狀態(tài)。由第四強度理論知,要使材料產(chǎn)生流動變形,需滿足公式(1):

圖6 芯棒與彎曲模的相互作用

圖7 D 點間隙δ 推導(dǎo)圖

三向壓應(yīng)力相等,左邊結(jié)果為0,永不會大于σs,不會出現(xiàn)流動變形,即應(yīng)變?yōu)?,也就是說,管子實際應(yīng)變中性層將移至該點,若以該點為應(yīng)力中性層求彎曲力矩,管截面各點離原中性層A-B 線的距離增加,當(dāng)然所需彎曲力矩要增加。以該點為應(yīng)變中性層求各點應(yīng)變,如在A 點,要為原來的2 倍。超過了允許應(yīng)變值,就要發(fā)生斷裂。當(dāng)然在圖5 的D2點右側(cè)附近軸向壓應(yīng)力也要增加,增至一定程度,管壁失穩(wěn)產(chǎn)生折皺。
那么,彎曲模與芯棒在變形處為何種截面形狀,才能使管壁在圖6 中的D 點不致受壓,在管子彎曲變形時D 點能在厚度方向自由變厚,應(yīng)變中性層不因模具產(chǎn)生位移?而在管子幾何對稱線C-B 附近,如何不使彎曲力矩增大,影響彎管質(zhì)量呢?由圖6 可以看出,若能在彎曲時使D 點稍有間隙,管子彎曲變形,D 點產(chǎn)生軸向壓縮時,壁厚方向就能產(chǎn)生不受阻力的變形。
解決的辦法是:把模槽改為半個橢圓形,圖6 中的C-B 為短軸,O-D 為長半軸,使彎曲時圖5 中的D1-D2截面上受的壓力從圖6 中的D 點移至C、B 兩點,D 點間隙δ 可由圖7 推出:
彎曲前:L0=θ(R+r)
寬度為b 的體積為:
V1=bT1(壁厚)L1=bT1Rθ
V2=bT0L0=bT0θ(R+r)
彎曲后體積不變,即V1=V0或

化簡得彎曲后A、B 處壁厚

T0為彎曲前壁厚D 點間隙橢圓長,短軸的尺寸按公式:
短軸:CB=?(芯棒直徑)+2T0-0.1

圖1 所示管件彎曲模計算如下:

長半軸:

這樣的模槽彎曲時圖6 中的C、B 兩點受壓,而B-C 線正好位于管子受純彎矩時中性層附近,所以對應(yīng)變、應(yīng)力中性層均無大影響。D 點稍有間隙能保證管壁自由變厚,由于間隙很小同時又能防止該處產(chǎn)生折皺。
設(shè)計彎管設(shè)備,不管使用何種動力,無論是人力、機械還是液壓,都需知所需彎曲力矩,才能進(jìn)行傳動部分結(jié)構(gòu)及零件設(shè)計計算,才能選用動力。總結(jié)了彎管所需力矩的簡單計算公式,經(jīng)幾種管件彎曲驗證,基本正確。
兩點假設(shè):
(1)材料為無硬化純塑性彎曲,中性層兩側(cè)拉應(yīng)力與壓應(yīng)力值相等,為材料的流動極限σS,如圖8所示,無彈性或彈塑性,彎曲時中性兩側(cè)應(yīng)力線性分布情況。

圖8 無彈性或彈塑性,彎曲時中性兩側(cè)應(yīng)力線性分布圖
(2)彎曲時應(yīng)力中性層仍在管截面幾何對稱軸上,不考慮彎曲后受壓側(cè)變厚,受拉側(cè)變薄及彎曲模引起的應(yīng)力中性層變化。
在圖9 所示小面積ds 上的力對x 軸所產(chǎn)生的力矩為dM=σS·ds·y,σS為常量,y=Rsinθ,ds=dR·R·dθ,x 軸上半部對x 軸產(chǎn)生彎矩為:


圖9 小面積ds 上的力對x 軸所產(chǎn)生的力矩圖

同樣,x 軸下半部產(chǎn)生的力矩

且與M1同方向。所需總力矩應(yīng)為

再考慮芯棒與管壁摩擦引起阻力矩,模槽芯棒引起中性層變化帶來對加力矩及變形量較大時應(yīng)力值要大于σS等因素,其公式乘以系數(shù)K,K 值一般取1.5。圖9 所示管件所需彎曲力矩應(yīng)為:

有了彎曲模、芯棒合理形狀來保證彎管質(zhì)量,又求出了所需力矩,再加上彎曲速度一般控制在0.1~0.5m/s 的經(jīng)驗數(shù)據(jù),基本上為設(shè)計計算彎管機提供了所需的必要數(shù)據(jù)。
本文根據(jù)實際生產(chǎn)中所面臨的問題,即管件彎曲后會出現(xiàn)明顯的凸起,質(zhì)量較差,達(dá)不到使用要求,重新設(shè)計了有芯彎管機的芯棒形狀,將芯棒端部的半球形改為芯棒上部為圓弧,下部為直線,并與圓弧相交。同時,將彎管模槽型由半圓形改為橢圓形,避免彎曲時管件出現(xiàn)褶皺,總結(jié)了彎管所需力矩的簡單計算公式,為設(shè)計計算彎管機提供了必要數(shù)據(jù)。
[1]王偉榮.常見彎管模具的設(shè)計及工藝探討[J].山西機械,2010,(3):12-15.
[2]趙臻淞.管材彎曲工藝研究新進(jìn)展[J].金屬成形工藝,2002,(2):1-5.
[3]武世勇.纏繞式彎管工藝對管壁厚度影響的數(shù)值分析[J].鍛壓技術(shù),2002,(1):35-38.
[4]王洪斌.鋼管無芯彎曲及變形的計算.機械工程手冊 第7 卷[M].北京:機械工業(yè)出版社,1982.
[5]郝 力,高旭光.金屬管件的彎曲工藝和彎管模具結(jié)構(gòu)形式[J].汽輪機技術(shù),2004,(4):102-105.
[6]涂序斌.管材切斷與剖切的模具設(shè)計[J].煤礦機械,2009,(12):112-113.
[7]劉潤生.無心彎管胎模設(shè)計[J].模具技術(shù),2003,(4):9-11.
[8]閔俊芳.模具設(shè)計與制造設(shè)計方法研究[J].科技信息,2009,(33):23-25.
[9]李曉紅.拉拔式無芯彎管模型槽的改進(jìn)[J].模具工業(yè),2002,(3).
[10]石 偉.纏繞拉拔式彎管過程中彎頭截面變形的有限元分析[J].電站系統(tǒng)工程,2003,(4).
[11]胡 忠.大直徑厚壁管中頻感應(yīng)局部加熱彎管工藝研究[J].中國機械工程,1998,9(3):19-22.