999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

微流控芯片快速鑒定多重細(xì)菌

2014-07-10 21:14:43文小霞等
分析化學(xué) 2014年6期

文小霞等

摘 要 [HTSS]建立了一種用于多重細(xì)菌鑒定的微流控芯片分析方法。在芯片上實(shí)現(xiàn)細(xì)菌進(jìn)樣、培養(yǎng)和鑒定,結(jié)合培養(yǎng)池陣列的空間分辨力以及菌種特異性顯色培養(yǎng)基的顏色分辨力,可以實(shí)現(xiàn)多重細(xì)菌檢測。實(shí)驗(yàn)選用4種泌尿系統(tǒng)感染常見病原菌作為模擬測試對象,結(jié)果顯示,這種芯片方法在15 h內(nèi)可完成細(xì)菌鑒定,

關(guān)鍵詞 微流控芯片; 細(xì)菌鑒定; 多重顯色反應(yīng); 快速檢測

1 引 言

細(xì)菌感染可以引發(fā)多種疾病,不僅發(fā)病率高而且經(jīng)常引發(fā)危重病情,因而需要及時(shí)診治。細(xì)菌感染的主要治療手段是使用抗生素,而抗生素治療需要在明確病原的前提下合理選擇抗生素的種類和劑量[1]。傳統(tǒng)的細(xì)菌鑒定方法是將病人體液標(biāo)本涂布在含有培養(yǎng)基的瓊脂平板上培養(yǎng)增菌,繼而挑選優(yōu)勢細(xì)菌培養(yǎng)鑒定并且進(jìn)行藥敏實(shí)驗(yàn)。這種方法存在的問題在于樣品消耗量大和檢測時(shí)間長[2,3],經(jīng)常無法有效滿足臨床工作的需求[4]。此外,傳統(tǒng)細(xì)菌鑒定方法大多依賴于眾多的大型專業(yè)化設(shè)備[5~8],限制了該技術(shù)在基層醫(yī)療單位的推廣。因此,應(yīng)發(fā)展簡便、快速和便攜式細(xì)菌鑒定平臺, 以滿足臨床工作的迫切需要。

為解決傳統(tǒng)細(xì)菌鑒定平臺的不足,先期研究報(bào)導(dǎo)了一系列基于微流控芯片的細(xì)菌鑒定[9~15]和藥物敏感性分析技術(shù)[16~20]。上述微流控細(xì)菌分析技術(shù)較之傳統(tǒng)方法具有多方面優(yōu)勢:首先,芯片微分析平臺有效降低了試樣消耗量并提高了測試通量[21];其次,大多數(shù)芯片細(xì)菌分析方法可以省略增菌步驟,因而顯著縮短了分析時(shí)間[22];再者,芯片細(xì)菌分析平臺操作簡便且小巧便攜,非常適合于應(yīng)對現(xiàn)場快速檢測[23]。綜上所述,微流控芯片技術(shù)為細(xì)菌分析提供了一種理想的解決方案。

臨床上,細(xì)菌感染多表現(xiàn)為呼吸、消化、泌尿等系統(tǒng)的炎癥,每個(gè)系統(tǒng)感染的病原均包括多種細(xì)菌,故而要求細(xì)菌分析平臺具備多重病原菌鑒定能力。前期報(bào)導(dǎo)的微流控細(xì)菌分析技術(shù),大多只針對一種特定細(xì)菌[14,23,24],因而臨床應(yīng)用價(jià)值有限。微流控芯片具有結(jié)構(gòu)設(shè)計(jì)靈活的特點(diǎn),便于在微小尺寸下實(shí)現(xiàn)集成式和高通量分析,這一優(yōu)勢非常適合于高通量細(xì)菌分析鑒定[25]。因此,有望借助微流控技術(shù)實(shí)現(xiàn)多重細(xì)菌鑒定。

本研究發(fā)展了一種用于多重細(xì)菌鑒定的微流控分析方法。所用微流控裝置結(jié)合芯片和外部控制檢測系統(tǒng),可以實(shí)現(xiàn)進(jìn)樣、細(xì)菌培養(yǎng)和鑒定。實(shí)驗(yàn)選用一組泌尿系統(tǒng)感染常見病原菌作為模擬對象,測試了系統(tǒng)的性能,繼而使用臨床樣品驗(yàn)證了該分析方法的實(shí)用性。實(shí)驗(yàn)結(jié)果顯示,這種微流控細(xì)菌鑒定方法可以簡便可靠地實(shí)現(xiàn)多重細(xì)菌鑒定。

2 實(shí)驗(yàn)部分

2.1 儀器、試劑與材料

3 結(jié)果與討論

3.1 微流控芯片設(shè)計(jì)

細(xì)菌生長需要適宜的溫度、濕度、氧含量以及足夠的養(yǎng)份供應(yīng)。本實(shí)驗(yàn)的檢測對象均為需氧菌,因此選用具有透氣性的PDMS加工芯片。芯片底層為PDMS薄層,芯片頂部的扣板具有空隙,允許芯片與外部進(jìn)行充分的氣體交換。芯片置放于37 ℃溫控板上為細(xì)菌生長提供適宜溫度,同時(shí)加熱條件下蓄水池內(nèi)水分的蒸發(fā)可以保證足夠的濕度。芯片培養(yǎng)池內(nèi)固定的瓊脂內(nèi)包含培養(yǎng)基,為細(xì)菌生長提供養(yǎng)分。實(shí)驗(yàn)設(shè)計(jì)培養(yǎng)池體積約為19 μL,容納14 μL凝固顯色培養(yǎng)基及5 μL細(xì)菌懸液,可以為細(xì)菌生長提供足夠的空間。

在重力和表面張力作用下,引入芯片的細(xì)菌懸液在流動過程中會順序充滿一系列培養(yǎng)池[27]。由于層流效應(yīng),進(jìn)樣中頂層的流體極少擾動培養(yǎng)池中液體,加之瓊脂的阻滯效應(yīng)可以限制不同培養(yǎng)池中顯色試劑的交叉污染。培養(yǎng)中,相鄰培養(yǎng)池之間的通道被扣板上的突起壓閉,起到微閥作用限制培養(yǎng)池間顯色物質(zhì)的相互干擾(圖2b)。培養(yǎng)池內(nèi)的瓊脂含有菌種特異性顯色培養(yǎng)基,只有某種特定細(xì)菌的代謝產(chǎn)物方可使培養(yǎng)基中底物顯色。依據(jù)顯色培養(yǎng)池位置,就可以判定細(xì)菌的種類。這樣,結(jié)合細(xì)菌培養(yǎng)池陣列的空間分辨力以及特異性顯色反應(yīng)的菌種分辨力,就可以實(shí)現(xiàn)多重細(xì)菌檢測。

3.2 顯色培養(yǎng)基濃度的選擇

實(shí)驗(yàn)使用的瓊脂培養(yǎng)基中含有顯色底物,可以在細(xì)菌產(chǎn)生的特異性酶作用下發(fā)生顯色反應(yīng)。實(shí)驗(yàn)考察了培養(yǎng)基濃度對芯片培養(yǎng)細(xì)菌顯色效果的影響,結(jié)果顯示顯色強(qiáng)度隨著培養(yǎng)基濃度的增高而加深(圖3a)。然而,使用過高濃度培養(yǎng)基時(shí)由于粘度增加使得操作困難。綜合考慮,實(shí)驗(yàn)選用金黃色葡萄球菌培養(yǎng)基濃度為0.2 g/mL,大腸桿菌、腸球菌、沙門氏菌培養(yǎng)基濃度均為0.15 g/mL。[TS(][HT5”SS]圖3 圖a1~4為相機(jī)拍照不同濃度培養(yǎng)基的顯色效果,每種培養(yǎng)基配制4種不同濃度,每種濃度做3個(gè)平行測試,培養(yǎng)15 h后拍照。(1:金黃色葡萄球菌;2:大腸桿菌;3:糞腸球菌;4:腸炎沙門氏菌); 圖b 1~8為相機(jī)拍照不同金黃色葡萄球菌

實(shí)驗(yàn)比較了芯片和傳統(tǒng)細(xì)菌培養(yǎng)方法中細(xì)菌的生存率與增殖率。以金黃色葡萄球菌(ATCC25923)為例,在分別培養(yǎng)0,2,4,6,8,10 h后,顯微鏡下計(jì)數(shù)結(jié)果顯示使用兩種方法培養(yǎng)的細(xì)菌數(shù)量在此階段不斷增加(圖4 a~f),呈現(xiàn)指數(shù)增殖狀態(tài)(圖4g),細(xì)菌生存率均為100%。得益于芯片微小培養(yǎng)池中充足的養(yǎng)分和良好的氧氣供應(yīng),芯片組細(xì)菌的增殖率總體上要高于培養(yǎng)瓶組(圖4h)。

[TS(][HT5”SS]圖4 SYTO 9 /PI染色熒光圖片顯示金黃色葡萄球菌(ATCC25923)在培養(yǎng)0,2,4,6,8,10 h后的生長情況(a~f)(放大倍數(shù)10×10,標(biāo)尺50 μm);(g)芯片和培養(yǎng)瓶中金黃色葡萄球菌生長曲線;(h)芯片和培養(yǎng)瓶中金黃色葡萄球菌增殖率比較

Fig.4 Fluorescence images (a-f) showing the density of Staphylococcus aureus(ATCC25923)(stained with SYTO 9 /PI)at different incubation time ( 0, 2, 4, 6, 8, 10 h).(Magnification factor: 10×10,scale bar: 50 μm); (g) Plots of bacteria density vs time; (h) Proliferation rates of Staphylococcus aureus cultured on chips and in flasks [HT5][TS)]

3.4 芯片上多重細(xì)菌的鑒定

顯色培養(yǎng)基的原理是通過微生物自身代謝產(chǎn)物與相應(yīng)底物反應(yīng)顯色反應(yīng)進(jìn)行細(xì)菌鑒定。顯色底物是由產(chǎn)色基因和微生物可代謝物質(zhì)組成,在微生物代謝產(chǎn)物作用下游離出產(chǎn)色基因因而顯示一定顏色,便于在細(xì)菌培養(yǎng)的同時(shí)完成菌種鑒定。利用顯色培養(yǎng)基進(jìn)行微生物的篩選分離,其靈敏度和特異性都要優(yōu)于傳統(tǒng)培養(yǎng)基。臨床上使用傳統(tǒng)方法細(xì)菌培養(yǎng)時(shí)間需要16~48 h[28],而本實(shí)驗(yàn)利用基于顯色培養(yǎng)基的芯片方法可以在15 h內(nèi)同步完成增菌與鑒定。灌入等比例的4種細(xì)菌懸液培養(yǎng)后,所得的顯色結(jié)果與產(chǎn)品說明書一致(圖5b)。將4種顯色培養(yǎng)基分別加入一張芯片的指定細(xì)菌培養(yǎng)池中,即可同時(shí)檢測4種細(xì)菌。這種芯片細(xì)菌鑒定方法具有良好的擴(kuò)展能力,未來我們將使用更多種類的顯色培養(yǎng)基以實(shí)現(xiàn)多種細(xì)菌的同步檢測。實(shí)驗(yàn)還發(fā)現(xiàn)某些細(xì)菌具有產(chǎn)氣特性導(dǎo)致培養(yǎng)池中較多氣泡,因而影響了顏色判讀,這個(gè)問題需要在后續(xù)工作中解決。

3.5 芯片細(xì)菌檢測方法與傳統(tǒng)方法的比較

實(shí)驗(yàn)利用芯片和傳統(tǒng)方法平行檢測了40例尿路感染病人的尿液標(biāo)本,檢測結(jié)果如表1所示。在40例標(biāo)本中,芯片方法鑒定出10例大腸桿菌,5例腸球菌,2例金黃色葡萄球菌,10例陰性,其余13例為除上述金黃色葡萄球菌,大腸桿菌,糞腸球菌和腸炎沙門氏菌以外的其它細(xì)菌感染。標(biāo)本中各種菌的典型顯色效果(圖5c~e)與陽性對照(標(biāo)準(zhǔn)菌液,圖b)一致。對于實(shí)驗(yàn)包含的檢測對象,芯片方法與傳統(tǒng)方法的符合率為

96.3%。由于目前實(shí)驗(yàn)設(shè)定的檢測范圍有限,芯片方法的總檢出率較低,需要在后續(xù)實(shí)驗(yàn)中增加顯色培養(yǎng)基的種類。

[TS(][HT5”SS]圖5 芯片上多重細(xì)菌檢測結(jié)果

Fig.5 Multiplex bacteria identification on the microchip

a. 陰性對照 (含有四種標(biāo)準(zhǔn)菌株等比例混合液的尿液標(biāo)本,4℃保存15 h);b. 陽性對照 (含有四種標(biāo)準(zhǔn)菌株等比例混合液的尿液標(biāo)本培養(yǎng)15 h,從左往右4列培養(yǎng)池分別含有金黃色葡萄球菌、大腸桿菌、腸球菌、沙門氏菌顯色培養(yǎng)基); c. 金黃色葡萄球菌(+)臨床尿液標(biāo)本(第1列顯綠色);d. 大腸桿菌(+)臨床尿液標(biāo)本(第2列顯紅色);e腸球菌(+)臨床尿液標(biāo)本(第3列顯暗黃色)。

a. Negative control (Urine sample contains the four standard bacteria strains of equal density, kept at 4℃ for 15 h); b-e: Urine samples were incubated at 37℃ for 15 h, for simultaneous detection of 4 bacteria using the chromogenic method. b. Positive control (Urine sample contains the four standard bacteria strains of equal density. The four rows of chambers from left to right contains chromogenic medium specific to Staphylococcus aureus,Escherichia coli,Enterococcus and Salmonella, respectively); c. A typical Staphylococcus aureus (+) case, with the first row of chambers appeared green; d. A typical Escherichia coli (+) case, with the second row of chambers appeared red; e. A typical Enterococcus (+) case, with the third row of chambers appeared dark yellow.(Incubation time for b-e: 15 h).[HT5][TS)]

[HT5”SS][HJ*4]表1 微流控芯片和傳統(tǒng)方法細(xì)菌檢測結(jié)果比較

Table 1 Comparison of bacteria identification using the microchip and the conventional method

[HT6SS][BG(][BHDFG3,WK9*3/4,WK9*4\.2,K*2,K93/4,WK94。2W]菌名Bacteria傳統(tǒng)細(xì)菌鑒定法Conventional method微流控芯片顯色法Microchip method菌名Bacteria傳統(tǒng)細(xì)菌鑒定法Conventional method微流控芯片顯色法Microchip method

大腸埃希菌Escherichia coli1010

腸球菌Enterococcus55

金黃色葡萄球菌Staphylococcus aureus32無細(xì)菌生長Bacteria (-)99其它菌Other bacteria or fungi13*0檢出率

Detection rate100%65%[BHDFG6,WKZQ0W]* 傳統(tǒng)方法鑒定結(jié)果為除外本實(shí)驗(yàn)所選4種檢測對象的其它細(xì)菌和真菌: 5例為奇異變形桿菌、2例為銅綠假單胞菌、4例為白色念珠菌、2例為酵母菌。

* Samples were identified as containing bacteria or fungi other than the 4 detection objects: Proteus mirabilis, 5 cases; Pseudomonas aeruginosa, 2 cases; Candida albicans, 4 cases and Candida, 2 cases. [BG)W][HT5][HJ]

上述結(jié)果表明,本研究發(fā)展的微流控細(xì)菌分析系統(tǒng)可以簡便快速地實(shí)現(xiàn)多重細(xì)菌鑒定,因而有望發(fā)展成為一種有力的細(xì)菌檢測工具。

References

1 Takagi R, Fukuda J, Nagata K, Yawata Y, Nomura N, Suzuki H. Analyst, 2013, 138(4): 1000-1003

2 Gan M, Tang Y, Shu Y, Wu H,Chen L. Small, 2012, 8(6): 863-867

3 Luo X, Shen K, Luo C, Ji H, Ouyang Q,Chen Y. Biomedical Microdevices, 2010, 12(3): 499-503

4 Pulido M R, GarcíaQuintanilla M, MartinPea R, Cisneros J M, McConnell M J. Journal of Antimicrobial Chemotherapy, 2013, 68(12): 2710-2717

5 Driskell J D K K M, Lipert R J, Porter M D, Neill J D,Ridpath J F. Anal. Chem., 2005, 77(19): 6147-6154

6 Matos Pires N M D T. Sensors (Basel), 2013, 13(12): 15898-15911

7 Salam Faridah U Y, Tothill Ibtisam E. Talanta, 2013, 115: 761-767

8 Pierce S E, Bell R L, Hellberg R S, Cheng C M, Chen K S, WilliamsHill D M, Martin W B, Allard M W. Applied and Environmental Microbiology, 2012, 78(23): 8403-8411

9 Zuo P, Li X, Dominguez D C,Ye B C. Lab Chip, 2013, 13(19): 3921-3928

10 Issadore D, Chung H J, Chung J, Budin G, Weissleder R, Lee H. Advanced Healthcare Materials, 2013, 2(9): 1224-1228

11 Cooper R, Leslie D C, Domansky K, Jain A, Yung C W, Cho M, Workman S, Super M,Ingber D. Lab Chip, 2013, 14(1): 182-188

12 Bouguelia S, Roupioz Y, Slimani S, Mondani L, Casabona M G, Durmort C, Vernet T, Calemczuk R, Livache T. Lab Chip, 2013, 13(20): 4024-4032

13 Wang S Q, Inci F, Chaunzwa T L, Ramanujam A, Vasudevan A, Subramanian S, Ip A C F, Sridharan B, Gurkan U A, Demirci U. International Journal of Nanomedicine, 2012, 7: 2591-2600

14 Derda R, Lockett M R, Tang S K Y, Fuller R C, Maxwell E J, Breiten B, Cuddemi C A, Ozdogan A,Whitesides G M. Anal. Chem., 2013, 85(15): 7213-7220

15 David Cowcher Y X, Goodacre R. Anal. Chem., 2013, 85(6): 3297-3302

16 Shariff V A AR S M S, Yadav T, M R. Journal of Clinical and Diagnostic Research, 2013, 7(6): 1027-1030

17 Choi J, Jung Y G, Kim J, Kim S, Jung Y, Na H, Kwon S. Lab Chip, 2013, 13(2): 280-287

18 Deiss F, FunesHuacca M E, Bal J, Tjhung K F,Derda R. Lab Chip, 2013, 14(1): 167-171

19 Kalashnikov M, Lee J C, Campbell J, Sharon A,SauerBudge A F. Lab Chip, 2012, 12(21): 4523-4532

20 Mohan R, Mukherjee A, Sevgen S E, Sanpitakseree C, Lee J, Schroeder C M,Kenis P J A. Biosensors and Bioelectronics, 2013, 49: 118-125

21 Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P,Wang J. Biosensors and Bioelectronics, 2011, 26(5): 1993-1999

22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121

23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278

24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270

25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092

26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984

27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001

張 瓊, 周小棉, 嚴(yán) 偉, 梁廣鐵, 張其超, 劉大漁. 分析化學(xué), 2012, 40(7): 996-1001

28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24

Rapid Identification of Multiple Bacteria on a Microfluidic Chip

WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,

CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2

1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,

Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)

2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)

Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.

Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection

(Received 23 December 2013; accepted 2 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)

22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121

23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278

24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270

25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092

26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984

27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001

張 瓊, 周小棉, 嚴(yán) 偉, 梁廣鐵, 張其超, 劉大漁. 分析化學(xué), 2012, 40(7): 996-1001

28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24

Rapid Identification of Multiple Bacteria on a Microfluidic Chip

WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,

CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2

1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,

Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)

2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)

Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.

Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection

(Received 23 December 2013; accepted 2 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)

22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121

23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278

24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270

25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092

26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984

27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001

張 瓊, 周小棉, 嚴(yán) 偉, 梁廣鐵, 張其超, 劉大漁. 分析化學(xué), 2012, 40(7): 996-1001

28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24

Rapid Identification of Multiple Bacteria on a Microfluidic Chip

WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,

CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2

1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,

Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)

2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)

Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.

Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection

(Received 23 December 2013; accepted 2 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)

主站蜘蛛池模板: 91偷拍一区| 国产一二三区视频| 一本久道久综合久久鬼色| 日本午夜三级| 人妻精品全国免费视频| 久久综合激情网| 97se亚洲| 国产在线无码一区二区三区| 欧美在线黄| 国产肉感大码AV无码| 久久综合色播五月男人的天堂| 制服丝袜无码每日更新| 成人亚洲天堂| 小说区 亚洲 自拍 另类| 午夜一区二区三区| 国产亚洲精品无码专| 青青草国产一区二区三区| 啦啦啦网站在线观看a毛片| 一级毛片免费高清视频| 五月天久久婷婷| 国产精品lululu在线观看| 亚洲欧美日韩综合二区三区| 亚洲日韩AV无码精品| 超碰精品无码一区二区| 在线无码私拍| 国产微拍精品| 五月激情综合网| 国产精品.com| 91欧美在线| 亚洲AV无码久久精品色欲 | 欧美中日韩在线| 中国国产A一级毛片| 国产精品专区第1页| 亚洲无线视频| 亚洲国产综合自在线另类| 国产永久免费视频m3u8| 亚洲无线一二三四区男男| 国产综合精品日本亚洲777| 18禁色诱爆乳网站| 日韩欧美国产中文| 国产AV无码专区亚洲A∨毛片| 亚洲三级成人| 黄色福利在线| 2020最新国产精品视频| 成人一区专区在线观看| 欧美在线视频不卡第一页| 亚洲手机在线| 亚洲AV成人一区二区三区AV| 久操线在视频在线观看| a毛片免费观看| 国产精品自在自线免费观看| 亚洲无卡视频| 免费高清自慰一区二区三区| 国产一级在线观看www色| 日本高清视频在线www色| 亚洲综合专区| 久久a级片| 欧美日韩国产一级| 亚洲精品无码久久毛片波多野吉| 国产成人三级| 在线免费看片a| 免费一级毛片不卡在线播放| 国产一级在线播放| 国产精品一老牛影视频| 国产精品无码AV中文| 亚洲精品亚洲人成在线| 亚洲国产欧美国产综合久久 | 亚洲成肉网| 乱人伦视频中文字幕在线| 在线免费看黄的网站| 免费观看国产小粉嫩喷水| www.亚洲天堂| 国产综合亚洲欧洲区精品无码| 极品私人尤物在线精品首页| 国产系列在线| 欧美a级完整在线观看| 四虎永久免费地址在线网站| 91黄视频在线观看| 国产91透明丝袜美腿在线| 亚洲综合第一区| 亚洲黄色网站视频| 国产第一页第二页|