999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

免疫毒素LHRHPE40對HeLa細胞表面硬度的影響

2014-07-10 21:19:11張晶
分析化學 2014年6期
關鍵詞:實驗研究

張晶

摘 要 利用基于原子力顯微鏡(AFM)的力譜技術, 在正常生長的單個活細胞表面上, 實時動態地研究了免疫毒素HeLa細胞表面硬度的影響。采用HertzSneddon模型計算所得力曲線相應的楊氏模量。實驗表明,

1 引 言

不斷發展的納米技術使得科研工作者可以在納米級尺度上操縱生物分子和細胞,同時在pN(皮牛)級別上獲得各種分子間的相互作用力[1~3]。在這些納米技術中,原子力顯微鏡(AFM)是一項具有多種功能的技術手段。AFM可以在準生理條件下對生物樣品進行直接測量,不需要復雜的樣品處理過程,這使其迅速地被應用于各種生物樣品的研究中[4~7]。

在過去的十多年中,研究者應用傳統分子生物學實驗方法對腫瘤細胞的生化性質進行了大量研究。但是,腫瘤細胞的機械硬度一直都被忽視,盡管腫瘤組織的入侵過程和腫瘤細胞的表面硬度有密切關系[8,9]。近年,細胞硬度作為腫瘤治療中的一項潛在的生物物理指標受到越來越多的關注[10,11]。在單細胞水平上分析細胞的表面硬度對理解腫瘤組織對化療藥物的反應和評價腫瘤的預后效果十分重要[12]。1992年,Tao等應用AFM研究了被切片的生物組織的硬度[13]。Hoh等應用AFM研究了活細胞的表面硬度[14]。基于這些開創性的研究工作,越來越多的研究者致力于探測在各種不同生理條件下活細胞硬度的變化。Kloxin等通過改變基底成分分析了基底機械性能對心臟瓣膜間質細胞活化成肌成纖維細胞的影響,對于組織再生工程合理地設計移植材料有著重要的意義[15]。Cross等用AFM測量了多種癌癥患者胸膜轉移癌細胞的硬度,發現轉移癌細胞的細胞硬度比良性細胞軟70%,為腫瘤的診斷和治療提供了依據[16]。

免疫毒素LHRHPE40是一種高特異性的針對大量表達LHRH受體(LHRHR)的癌細胞組織的抗癌藥物。LHRHPE40的作用機理是:導向部分配體LHRH通過其自身的特異性識別能力與目標組織細胞表面的LHRHR結合,毒性部分PE40通過跨膜轉運的方式進入細胞內,發揮其藥效,殺死腫瘤細胞[17]。

本研究采用AFM技術實時動態研究了LHRHPE40對HeLa細胞的硬度的影響,并且初步探索了引起HeLa細胞硬度發生變化的原因。

2 實驗部分

2.1 儀器與試劑

4 結 論

本研究應用AFM力譜技術考察了免疫毒素LHRHPE40對HeLa細胞的表面硬度的影響。結果表明,LHRHPE40會造成HeLa細胞在凋亡的過程中表面硬度逐步增加。熒光實驗結果表明, HeLa細胞硬度的增加與胞內微絲骨架的重組聚集有關。這些實驗結果為從細胞表面硬度角度掌握LHRHPE40的藥用效果和作用機理提供了重要信息。但是,在LHRHPE40的作用過程中,細胞內的各種生化組分發生了何種變化,仍需要借助其它如拉曼光譜等實驗技術的細胞成分分析功能進行進一步研究。

References

1 Neuman K C, Nagy A. Nat. Methods, 2008, 5(6): 491-505

2 Dickenson N E, Armendariz K P, Huckabay H A, Livanec P W, Dunn R C. Anal. Bioanal. Chem., 2010, 396(1): 31-43

3 JI TianRong, LIANG ZhongWei, ZHU XinYu, SHAO YuanHua. Chinese J. Anal. Chem., 2010, 38(12): 1821-1827

紀天容, 梁中偉, 朱新宇, 邵元華. 分析化學, 2010, 38(12): 1821-1827

4 Muller D J, Dufrene Y F. Nat. Nanotechnol., 2008, 3(5): 261-269

5 Jiang J G, Hao X, Cai M J, Shan Y P, Shang X, Tang Z Y, Wang H D . Nano Lett., 2009, 9(12): 4489-4493

6 Zhu R, Rupprecht A, Pohl E E. J. Am. Chem. Soc., 2013, 135(9): 3640-3646

7 Shi X L, Zhang X J, Xia T, Fang X H. Nanomedicine, 2012, 7(10): 1625-1637

8 Kumar S, Weaver V. Cancer Metast. Rev., 2009, 28(1): 113-127

9 Mierke C T. Cell Biochem. Biophys., 2011, 61(2): 217-236

10 Wilson L, Cross S, Gimzewski J, Rao J Y. Idrugs, 2010, 13(12): 847-851

11 Suresh S. Nat. Nanotechnol., 2007, 2(12): 748-749

12 Xiao L F, Tang M J, Li Q F, Zhou A H. Anal. MethodsUk, 2013, 5(4): 874-879

13 Tao N J, Lindsay S M, Lees S. Biophys. J., 1992, 63(4): 1165-1169

14 Hoh J H, Schoenenberger C A. J. Cell Sci., 1994, 107(5): 1105-1114

15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8

16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783

17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388

18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822

葉志義, 張 麗. 生命科學, 2010, 22(8): 817-822

19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325

Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells

ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1

1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.

Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy

(Received 29 November 2013; accepted 23 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).

15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8

16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783

17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388

18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822

葉志義, 張 麗. 生命科學, 2010, 22(8): 817-822

19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325

Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells

ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1

1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.

Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy

(Received 29 November 2013; accepted 23 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).

15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8

16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783

17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388

18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822

葉志義, 張 麗. 生命科學, 2010, 22(8): 817-822

19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325

Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells

ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1

1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.

Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy

(Received 29 November 2013; accepted 23 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).

猜你喜歡
實驗研究
記一次有趣的實驗
FMS與YBT相關性的實證研究
微型實驗里看“燃燒”
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
做個怪怪長實驗
EMA伺服控制系統研究
新版C-NCAP側面碰撞假人損傷研究
NO與NO2相互轉化實驗的改進
主站蜘蛛池模板: 欧美精品不卡| 999精品在线视频| 午夜限制老子影院888| 99国产精品国产| 久久久久夜色精品波多野结衣| 中文字幕中文字字幕码一二区| 欧美精品成人| 国产精品天干天干在线观看| 国产精品亚洲一区二区三区在线观看| 日本黄色a视频| 欧美伦理一区| 午夜天堂视频| 一级黄色片网| 国产美女久久久久不卡| 亚洲欧美日韩久久精品| 制服无码网站| 熟妇丰满人妻| 国产成人高清亚洲一区久久| a亚洲视频| 国产主播在线观看| 91在线国内在线播放老师| 国产91无毒不卡在线观看| 亚洲色中色| 亚洲国产精品一区二区高清无码久久| 国产精品久久精品| 一级毛片在线播放免费观看| 日韩美毛片| 久996视频精品免费观看| 性网站在线观看| 国产簧片免费在线播放| 区国产精品搜索视频| 91无码视频在线观看| 欧美一级黄片一区2区| 韩国福利一区| 波多野结衣国产精品| 国产网站免费| 99草精品视频| 91在线高清视频| 丁香亚洲综合五月天婷婷| 国内精自视频品线一二区| 91亚洲精品第一| 欧美自拍另类欧美综合图区| 国产成人毛片| 四虎精品黑人视频| 国产91成人| 99热这里只有精品国产99| 亚洲视频免费播放| 国产性爱网站| 免费观看亚洲人成网站| 高清欧美性猛交XXXX黑人猛交 | 婷婷综合在线观看丁香| 国产激爽爽爽大片在线观看| 午夜a视频| 久久国产香蕉| 亚洲无线国产观看| 精品久久国产综合精麻豆| 国产美女免费| 亚洲欧美综合在线观看| 欧美日韩第三页| 精品一区二区三区视频免费观看| 无码日韩人妻精品久久蜜桃| 久久综合九色综合97网| 欧美日韩国产系列在线观看| 国产精品理论片| 特级毛片免费视频| 国产精彩视频在线观看| 好吊妞欧美视频免费| 国产精品亚洲一区二区在线观看| 99久久人妻精品免费二区| 欧美一级专区免费大片| 免费黄色国产视频| 国产亚洲精品91| 色一情一乱一伦一区二区三区小说| 久久精品无码中文字幕| 亚洲视频在线观看免费视频| 九九视频免费在线观看| 亚洲精品自产拍在线观看APP| 久久亚洲AⅤ无码精品午夜麻豆| 国产精品3p视频| 亚洲色图另类| 日韩在线1| 久久a毛片|