999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

免疫毒素LHRHPE40對HeLa細胞表面硬度的影響

2014-07-10 21:19:11張晶
分析化學 2014年6期
關鍵詞:實驗研究

張晶

摘 要 利用基于原子力顯微鏡(AFM)的力譜技術, 在正常生長的單個活細胞表面上, 實時動態地研究了免疫毒素HeLa細胞表面硬度的影響。采用HertzSneddon模型計算所得力曲線相應的楊氏模量。實驗表明,

1 引 言

不斷發展的納米技術使得科研工作者可以在納米級尺度上操縱生物分子和細胞,同時在pN(皮牛)級別上獲得各種分子間的相互作用力[1~3]。在這些納米技術中,原子力顯微鏡(AFM)是一項具有多種功能的技術手段。AFM可以在準生理條件下對生物樣品進行直接測量,不需要復雜的樣品處理過程,這使其迅速地被應用于各種生物樣品的研究中[4~7]。

在過去的十多年中,研究者應用傳統分子生物學實驗方法對腫瘤細胞的生化性質進行了大量研究。但是,腫瘤細胞的機械硬度一直都被忽視,盡管腫瘤組織的入侵過程和腫瘤細胞的表面硬度有密切關系[8,9]。近年,細胞硬度作為腫瘤治療中的一項潛在的生物物理指標受到越來越多的關注[10,11]。在單細胞水平上分析細胞的表面硬度對理解腫瘤組織對化療藥物的反應和評價腫瘤的預后效果十分重要[12]。1992年,Tao等應用AFM研究了被切片的生物組織的硬度[13]。Hoh等應用AFM研究了活細胞的表面硬度[14]。基于這些開創性的研究工作,越來越多的研究者致力于探測在各種不同生理條件下活細胞硬度的變化。Kloxin等通過改變基底成分分析了基底機械性能對心臟瓣膜間質細胞活化成肌成纖維細胞的影響,對于組織再生工程合理地設計移植材料有著重要的意義[15]。Cross等用AFM測量了多種癌癥患者胸膜轉移癌細胞的硬度,發現轉移癌細胞的細胞硬度比良性細胞軟70%,為腫瘤的診斷和治療提供了依據[16]。

免疫毒素LHRHPE40是一種高特異性的針對大量表達LHRH受體(LHRHR)的癌細胞組織的抗癌藥物。LHRHPE40的作用機理是:導向部分配體LHRH通過其自身的特異性識別能力與目標組織細胞表面的LHRHR結合,毒性部分PE40通過跨膜轉運的方式進入細胞內,發揮其藥效,殺死腫瘤細胞[17]。

本研究采用AFM技術實時動態研究了LHRHPE40對HeLa細胞的硬度的影響,并且初步探索了引起HeLa細胞硬度發生變化的原因。

2 實驗部分

2.1 儀器與試劑

4 結 論

本研究應用AFM力譜技術考察了免疫毒素LHRHPE40對HeLa細胞的表面硬度的影響。結果表明,LHRHPE40會造成HeLa細胞在凋亡的過程中表面硬度逐步增加。熒光實驗結果表明, HeLa細胞硬度的增加與胞內微絲骨架的重組聚集有關。這些實驗結果為從細胞表面硬度角度掌握LHRHPE40的藥用效果和作用機理提供了重要信息。但是,在LHRHPE40的作用過程中,細胞內的各種生化組分發生了何種變化,仍需要借助其它如拉曼光譜等實驗技術的細胞成分分析功能進行進一步研究。

References

1 Neuman K C, Nagy A. Nat. Methods, 2008, 5(6): 491-505

2 Dickenson N E, Armendariz K P, Huckabay H A, Livanec P W, Dunn R C. Anal. Bioanal. Chem., 2010, 396(1): 31-43

3 JI TianRong, LIANG ZhongWei, ZHU XinYu, SHAO YuanHua. Chinese J. Anal. Chem., 2010, 38(12): 1821-1827

紀天容, 梁中偉, 朱新宇, 邵元華. 分析化學, 2010, 38(12): 1821-1827

4 Muller D J, Dufrene Y F. Nat. Nanotechnol., 2008, 3(5): 261-269

5 Jiang J G, Hao X, Cai M J, Shan Y P, Shang X, Tang Z Y, Wang H D . Nano Lett., 2009, 9(12): 4489-4493

6 Zhu R, Rupprecht A, Pohl E E. J. Am. Chem. Soc., 2013, 135(9): 3640-3646

7 Shi X L, Zhang X J, Xia T, Fang X H. Nanomedicine, 2012, 7(10): 1625-1637

8 Kumar S, Weaver V. Cancer Metast. Rev., 2009, 28(1): 113-127

9 Mierke C T. Cell Biochem. Biophys., 2011, 61(2): 217-236

10 Wilson L, Cross S, Gimzewski J, Rao J Y. Idrugs, 2010, 13(12): 847-851

11 Suresh S. Nat. Nanotechnol., 2007, 2(12): 748-749

12 Xiao L F, Tang M J, Li Q F, Zhou A H. Anal. MethodsUk, 2013, 5(4): 874-879

13 Tao N J, Lindsay S M, Lees S. Biophys. J., 1992, 63(4): 1165-1169

14 Hoh J H, Schoenenberger C A. J. Cell Sci., 1994, 107(5): 1105-1114

15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8

16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783

17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388

18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822

葉志義, 張 麗. 生命科學, 2010, 22(8): 817-822

19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325

Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells

ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1

1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.

Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy

(Received 29 November 2013; accepted 23 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).

15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8

16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783

17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388

18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822

葉志義, 張 麗. 生命科學, 2010, 22(8): 817-822

19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325

Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells

ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1

1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.

Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy

(Received 29 November 2013; accepted 23 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).

15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8

16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783

17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388

18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822

葉志義, 張 麗. 生命科學, 2010, 22(8): 817-822

19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325

Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells

ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1

1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)

2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.

Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy

(Received 29 November 2013; accepted 23 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).

猜你喜歡
實驗研究
記一次有趣的實驗
FMS與YBT相關性的實證研究
微型實驗里看“燃燒”
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
做個怪怪長實驗
EMA伺服控制系統研究
新版C-NCAP側面碰撞假人損傷研究
NO與NO2相互轉化實驗的改進
主站蜘蛛池模板: 99热6这里只有精品| 国产午夜不卡| 精品无码日韩国产不卡av | 日韩欧美高清视频| 国产va欧美va在线观看| 国产精品乱偷免费视频| h视频在线观看网站| 色综合久久久久8天国| 亚洲一区二区无码视频| 欧美无专区| 日韩在线成年视频人网站观看| 成人年鲁鲁在线观看视频| 午夜福利免费视频| 婷婷色一区二区三区| 亚洲码在线中文在线观看| 国产尤物在线播放| 老司机精品99在线播放| 国产成人综合日韩精品无码首页 | 欧美.成人.综合在线| 第一页亚洲| 久久人妻xunleige无码| 欧美国产视频| 网友自拍视频精品区| 精品成人一区二区| 在线观看国产网址你懂的| 91小视频在线观看| 国产91视频免费观看| 亚洲av无码牛牛影视在线二区| 麻豆AV网站免费进入| 一级做a爰片久久毛片毛片| 久久男人资源站| 亚洲欧美日韩久久精品| 国产男女免费视频| 免费国产小视频在线观看| 国产精品女人呻吟在线观看| 亚洲无码日韩一区| 中文字幕色在线| 蜜桃视频一区| 欧美一级大片在线观看| 国产成人精品综合| 免费 国产 无码久久久| 亚洲人精品亚洲人成在线| 亚洲国产精品美女| 99在线视频精品| 97精品国产高清久久久久蜜芽| 在线观看无码av五月花| 日韩欧美中文字幕在线精品| 亚洲成av人无码综合在线观看| 美女一级免费毛片| 免费国产不卡午夜福在线观看| 91精品国产福利| 亚洲国产综合第一精品小说| 国产亚洲视频播放9000| 国产成人调教在线视频| 红杏AV在线无码| 国产麻豆精品久久一二三| 91美女视频在线观看| 国产精品亚洲一区二区在线观看| 亚洲精品成人片在线观看| 精品国产电影久久九九| 久久综合五月| 欧美有码在线观看| 毛片在线播放a| 麻豆AV网站免费进入| 亚洲国产精品日韩专区AV| 日韩欧美国产另类| 蜜臀AVWWW国产天堂| 日本高清免费一本在线观看| 国产精品网拍在线| 亚洲欧美精品一中文字幕| 日韩黄色精品| 亚洲人成电影在线播放| 久热99这里只有精品视频6| 在线看片免费人成视久网下载| 国产成人亚洲精品蜜芽影院| 最新国产麻豆aⅴ精品无| 91精品福利自产拍在线观看| 国产精品理论片| 欧美a网站| 亚洲va欧美ⅴa国产va影院| 国产成人在线小视频| 亚洲天堂精品视频|