999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

氣相色譜/質譜法檢測灰塵、土壤和沉積物中有機磷酸酯

2014-07-10 21:30:35鹿建霞等
分析化學 2014年6期
關鍵詞:污染實驗分析

鹿建霞等

摘 要 本研究對實驗過程中可能存在的污染源進行了定性篩查,采用不同的質控措施以降低實驗過程中的背景污染。

1 引 言

有機磷酸酯(Organophosphate esters,OPEs)是一類由不同烴類取代基取代磷酸分子上的氫所形成的一類磷酸酯類化合物,其取代基可以是烷烴、芳香烴和鹵代烷烴。一般烷烴和芳香烴取代的OPEs常被用作增塑劑,而含鹵OPEs則被廣泛用作阻燃劑。OPEs由于阻燃性能高,可塑性強, 被廣泛應用于許多產品中,如清漆、聚氨酯泡沫、室內裝潢和紡織品等[1]。OPEs多以物理方式添加到材料中,因此在材料的生產、使用和廢棄處理過程中很容易釋放到周圍環境中。OPEs的分析方法及環境監測報道最早集中于20 世紀70~90 年代[2,3],近來隨著五溴聯苯醚、八溴聯苯醚被正式列入斯德哥爾摩公約,作為含溴阻燃劑的替代品OPEs再次受到環境科學家的廣泛關注,已在全球范圍內的多種環境介質,包括大氣、水、土壤和生物體中檢測到OPEs[3~10]。與傳統持久性有機污染的研究相比,有關OPEs的研究進展緩慢,實驗方法的欠缺,依然是制約該類污染物環境行為研究的主要因素之一。

2012年,由Brandsm等發起了OPEs的國際實驗室比對,來自9個國家和地區的實驗室參加了此次比對[11],結果表明,當前OPEs分析主要存在兩方面困難: (1)由于OPEs用途廣泛,測定中的污染物背景干擾已經成為該類化合物分析檢測的主要問題,必須有效降低背景污染; (2)對于基質成分復雜的樣品,儀器分析前必須采取嚴格的凈化步驟去除基質干擾。常用的凈化方法包括凝膠滲透色譜(GPC)凈化和固相萃取(SPE)柱凈化,其中GPC凈化不但費時費力,需要大量溶劑,且凈化效果不好。OPEs對強酸強堿都比較敏感,因此以強酸/強堿性吸附材料做填料的SPE也不能應用于這類污染物的分離凈化。近年來,以各種硅膠鍵合材料為吸附填料的SPE小柱斷被引入到復雜樣品中OPEs的分析[5,7]。

本研究對實驗室內可能存在OPEs污染的點源進行了初步分析,在嚴格的背景污染控制條件下,優化對比了幾種不同凈化手段對實際樣品中OPEs分離凈化效果,采用氣相色譜/質譜(GC/MS)建立了檢測灰塵、土壤和沉積物中7種主要OPEs的分析方法,并應用于實際樣品中該類污染物的分析。

2 實驗部分

2.1 儀器與試劑

安捷倫7890N聯5975C色譜質譜聯用儀(美國安捷倫公司);

1 WANG XiaoWei, LIU JingFu, YIN YongGuang. Prog.In.Chem., 2010, 22(10): 1983-1992

王曉偉, 劉景富, 陰永光. 化學進展, 2010, 22(10): 1983-1992

2 Lbel G L and Williams D T. Bull. Environ. Contam. Toxicol., 1986, 37(1): 41-46

3 David MD, Seiber,JN. Arch. Environ. Contam. Toxicol., 1999, 36(3): 235-241

4 Moeller A, Xie Z Y, Caba A, Sterm R, Ebinghaus R. Environ. Pollut., 2011, 159(12): 3660-3665

5 Chen D, Letcher R J, Chu S G. J.Chromatogr. A, 2012, 1220(13): 169-174

6 Reemtsma T, Sicco H, Brandsma S H, Boer J D, Cofino W P, Covaci A, Leonards P E. TracTrend Anal. Chem., 2008, 27(9): 727-737

7 YAN XiaoJu,HE Huan, PENG Ying, WANG XiaoMeng, GAO ZhanQi, YANG ShaoGui, SUN Cheng. Chinese J. Anal. Chem., 2012, 40(11): 1693-1696

嚴小菊, 何 歡, 彭 英, 王曉萌, 高占啟, 楊紹貴, 孫 成. 分析化學, 2012, 40(11): 1693-1696

8 Wang X W, Liu J F,Yin Y G. J. Chromatogr. A, 2011, 1218(38): 6705-6711

9 Cao S X, Zeng X Y, Song H, Li H R, Yu Z Q, Sheng G Y, Fu J M. Environ. Toxicol. Chem., 2012, 31(7): 1478-1484

10 Ma Y Q, Cui K Y, Zeng F, Wen J X, Liu H, Zhu F, Ouyang G F, Luan T G, Zeng Z X. Anal. Chim. Acta, 2013, 786(7): 47-53

11 Brandsma S H, Boer J D, Cofino W P, Covaci A, Leonards P E. TracTrend Anal. Chem., 2013, 43(2): 217-228

12 Cristale J, Lacorte S. J. Chromatogr. A, 2013, 1305(8): 267-275

13 Garcia M, Rodriguez I, Cela R. J.Chromatogr. A, 2007, 1152(12): 280-286

14 Kim J W, Isobe T, Sudaryanto A, Malarvannan G, Chang K H, Muto M, Prudente M, Tanabe S. Environ.Sc. Pollu. Res., 2013, 20(2): 812-822

15 Matthews H B, Eustis S L, Haseman J. Toxicol. Sc., 1993, 20 (4): 477-485

Analysis of Organophosphate Esters in Dust, Soil and Sediment

Samples Using Gas Chromatography Coupled with Mass Spectrometry

LU JianXia1, JI Wen1, MA ShengTao2, YU ZhiQiang2, WANG Zhao1, LI Han1,

REN GuoFa1, FU JiaMo1,2

1(Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering,

Shanghai University, Shanghai 200444, China)

2(State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources,

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract Background contamination is a major problem in the analysis of organophosphate esters (OPEs). In this study, the possible sources of OPEs pollution were screened and several different ways were applied to minimize the blank contamination. Under the strict quality control measures, the cleanup efficiency of different solid phase extraction (SPE) was investigated for OPEs in different environmental matrices. A method was developed for the detection of 7 OPEs in dust, soil and sediment samples by gas chromatograph coupled with mass spectrometry (GC/MS). Target compounds were extracted by hexane:dichloromethane (1∶1, V/V) followed by aminopropyl silica gel SPE column cleanup for dust, and target compounds in soil and sediment were Soxhlet extracted and cleanuped by twostep SPE. The results showed that the aminopropyl silica gel SPE column displayed the best purification performance among the three employed columns. Instrumental detection limits among the 7 OPEs ranged from 2.5 to 25.8 μg/L, and the method limits of quantification (MLOQs) in dust and soil sample ranged from 1.4 to 15.7 ng/g and 0.3 to 2.9 ng/g, respectively. The average recoveries of 7 OPEs in different matrices (dust and soil) at two spiked concentration levels ranged from 67.9% to 117.4%. The proposed method was successfully applied to detect OPEs in different environmental matrices collected in Shanghai.

Keywords Organophosphate flame retardant; Organophosphate esters; Gas chromatograph coupled with mass spectrometry; Soil; Sediment; Dust

(Received 3 December 2013; accepted 21 February 2014)

This work was supported by the National Science Foundation of China (Nos. 21007037, 41273121), National Program for Water Pollution Control (2009ZX0752800204), and Shanghai Leading Academic Disciplines (S30109).

14 Kim J W, Isobe T, Sudaryanto A, Malarvannan G, Chang K H, Muto M, Prudente M, Tanabe S. Environ.Sc. Pollu. Res., 2013, 20(2): 812-822

15 Matthews H B, Eustis S L, Haseman J. Toxicol. Sc., 1993, 20 (4): 477-485

Analysis of Organophosphate Esters in Dust, Soil and Sediment

Samples Using Gas Chromatography Coupled with Mass Spectrometry

LU JianXia1, JI Wen1, MA ShengTao2, YU ZhiQiang2, WANG Zhao1, LI Han1,

REN GuoFa1, FU JiaMo1,2

1(Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering,

Shanghai University, Shanghai 200444, China)

2(State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources,

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract Background contamination is a major problem in the analysis of organophosphate esters (OPEs). In this study, the possible sources of OPEs pollution were screened and several different ways were applied to minimize the blank contamination. Under the strict quality control measures, the cleanup efficiency of different solid phase extraction (SPE) was investigated for OPEs in different environmental matrices. A method was developed for the detection of 7 OPEs in dust, soil and sediment samples by gas chromatograph coupled with mass spectrometry (GC/MS). Target compounds were extracted by hexane:dichloromethane (1∶1, V/V) followed by aminopropyl silica gel SPE column cleanup for dust, and target compounds in soil and sediment were Soxhlet extracted and cleanuped by twostep SPE. The results showed that the aminopropyl silica gel SPE column displayed the best purification performance among the three employed columns. Instrumental detection limits among the 7 OPEs ranged from 2.5 to 25.8 μg/L, and the method limits of quantification (MLOQs) in dust and soil sample ranged from 1.4 to 15.7 ng/g and 0.3 to 2.9 ng/g, respectively. The average recoveries of 7 OPEs in different matrices (dust and soil) at two spiked concentration levels ranged from 67.9% to 117.4%. The proposed method was successfully applied to detect OPEs in different environmental matrices collected in Shanghai.

Keywords Organophosphate flame retardant; Organophosphate esters; Gas chromatograph coupled with mass spectrometry; Soil; Sediment; Dust

(Received 3 December 2013; accepted 21 February 2014)

This work was supported by the National Science Foundation of China (Nos. 21007037, 41273121), National Program for Water Pollution Control (2009ZX0752800204), and Shanghai Leading Academic Disciplines (S30109).

14 Kim J W, Isobe T, Sudaryanto A, Malarvannan G, Chang K H, Muto M, Prudente M, Tanabe S. Environ.Sc. Pollu. Res., 2013, 20(2): 812-822

15 Matthews H B, Eustis S L, Haseman J. Toxicol. Sc., 1993, 20 (4): 477-485

Analysis of Organophosphate Esters in Dust, Soil and Sediment

Samples Using Gas Chromatography Coupled with Mass Spectrometry

LU JianXia1, JI Wen1, MA ShengTao2, YU ZhiQiang2, WANG Zhao1, LI Han1,

REN GuoFa1, FU JiaMo1,2

1(Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering,

Shanghai University, Shanghai 200444, China)

2(State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources,

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract Background contamination is a major problem in the analysis of organophosphate esters (OPEs). In this study, the possible sources of OPEs pollution were screened and several different ways were applied to minimize the blank contamination. Under the strict quality control measures, the cleanup efficiency of different solid phase extraction (SPE) was investigated for OPEs in different environmental matrices. A method was developed for the detection of 7 OPEs in dust, soil and sediment samples by gas chromatograph coupled with mass spectrometry (GC/MS). Target compounds were extracted by hexane:dichloromethane (1∶1, V/V) followed by aminopropyl silica gel SPE column cleanup for dust, and target compounds in soil and sediment were Soxhlet extracted and cleanuped by twostep SPE. The results showed that the aminopropyl silica gel SPE column displayed the best purification performance among the three employed columns. Instrumental detection limits among the 7 OPEs ranged from 2.5 to 25.8 μg/L, and the method limits of quantification (MLOQs) in dust and soil sample ranged from 1.4 to 15.7 ng/g and 0.3 to 2.9 ng/g, respectively. The average recoveries of 7 OPEs in different matrices (dust and soil) at two spiked concentration levels ranged from 67.9% to 117.4%. The proposed method was successfully applied to detect OPEs in different environmental matrices collected in Shanghai.

Keywords Organophosphate flame retardant; Organophosphate esters; Gas chromatograph coupled with mass spectrometry; Soil; Sediment; Dust

(Received 3 December 2013; accepted 21 February 2014)

This work was supported by the National Science Foundation of China (Nos. 21007037, 41273121), National Program for Water Pollution Control (2009ZX0752800204), and Shanghai Leading Academic Disciplines (S30109).

猜你喜歡
污染實驗分析
記一次有趣的實驗
隱蔽失效適航要求符合性驗證分析
做個怪怪長實驗
堅決打好污染防治攻堅戰
當代陜西(2019年7期)2019-04-25 00:22:18
電力系統不平衡分析
電子制作(2018年18期)2018-11-14 01:48:24
堅決打好污染防治攻堅戰
電力系統及其自動化發展趨勢分析
NO與NO2相互轉化實驗的改進
實踐十號上的19項實驗
太空探索(2016年5期)2016-07-12 15:17:55
對抗塵污染,遠離“霾”伏
都市麗人(2015年5期)2015-03-20 13:33:49
主站蜘蛛池模板: 亚洲无码视频一区二区三区| 夜色爽爽影院18禁妓女影院| 亚洲毛片一级带毛片基地| 波多野结衣在线se| 亚洲国产理论片在线播放| 亚洲av综合网| 国产精品久久精品| 日韩精品高清自在线| 亚洲国产成人麻豆精品| 女人一级毛片| 亚洲av无码专区久久蜜芽| 欧美日本在线观看| 午夜无码一区二区三区| 亚洲成人播放| 无码AV日韩一二三区| 国产精品分类视频分类一区| 日本妇乱子伦视频| 91网红精品在线观看| 亚洲美女视频一区| 欧日韩在线不卡视频| 国产日韩丝袜一二三区| 露脸国产精品自产在线播| 久久久久无码精品| 夜精品a一区二区三区| 久久国产精品夜色| 自拍偷拍欧美| 五月婷婷综合在线视频| 直接黄91麻豆网站| 亚洲第一视频免费在线| 五月婷婷激情四射| 香蕉久久国产超碰青草| 精品一区二区三区水蜜桃| 日韩一级毛一欧美一国产 | 高清码无在线看| 亚洲av无码人妻| 亚洲精品不卡午夜精品| 亚洲人成网线在线播放va| 国产成人高清精品免费软件| 国产日韩欧美一区二区三区在线| 国产高清在线丝袜精品一区| 国产精品吹潮在线观看中文| 嫩草影院在线观看精品视频| 日韩二区三区无| 一边摸一边做爽的视频17国产| 无码精品国产dvd在线观看9久| 亚洲一区二区无码视频| 色综合狠狠操| 国产18在线播放| 精品亚洲麻豆1区2区3区| 国产在线98福利播放视频免费| 亚洲欧美综合在线观看| 97免费在线观看视频| 亚洲人在线| 日韩欧美国产成人| 国产亚洲精品yxsp| 国产v欧美v日韩v综合精品| 亚洲日韩在线满18点击进入| 国产一区三区二区中文在线| 免费视频在线2021入口| 人人妻人人澡人人爽欧美一区| 五月六月伊人狠狠丁香网| 精品1区2区3区| 国产精品爽爽va在线无码观看| 91福利一区二区三区| 欧美va亚洲va香蕉在线| 欧美在线精品一区二区三区| 亚洲午夜综合网| 亚洲欧洲日产无码AV| 91在线精品免费免费播放| 一级香蕉视频在线观看| 91麻豆精品国产高清在线| 国产在线精品香蕉麻豆| 人妻21p大胆| 国产精品30p| 色综合久久久久8天国| 成人年鲁鲁在线观看视频| 波多野结衣中文字幕一区| 国产欧美视频在线观看| 亚洲人成网站在线播放2019| 日韩欧美中文字幕在线精品| 丝袜无码一区二区三区| 欧美一区二区精品久久久|