999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

氣相色譜/質(zhì)譜法檢測灰塵、土壤和沉積物中有機磷酸酯

2014-07-10 21:30:35鹿建霞等
分析化學(xué) 2014年6期
關(guān)鍵詞:污染實驗分析

鹿建霞等

摘 要 本研究對實驗過程中可能存在的污染源進行了定性篩查,采用不同的質(zhì)控措施以降低實驗過程中的背景污染。

1 引 言

有機磷酸酯(Organophosphate esters,OPEs)是一類由不同烴類取代基取代磷酸分子上的氫所形成的一類磷酸酯類化合物,其取代基可以是烷烴、芳香烴和鹵代烷烴。一般烷烴和芳香烴取代的OPEs常被用作增塑劑,而含鹵OPEs則被廣泛用作阻燃劑。OPEs由于阻燃性能高,可塑性強, 被廣泛應(yīng)用于許多產(chǎn)品中,如清漆、聚氨酯泡沫、室內(nèi)裝潢和紡織品等[1]。OPEs多以物理方式添加到材料中,因此在材料的生產(chǎn)、使用和廢棄處理過程中很容易釋放到周圍環(huán)境中。OPEs的分析方法及環(huán)境監(jiān)測報道最早集中于20 世紀(jì)70~90 年代[2,3],近來隨著五溴聯(lián)苯醚、八溴聯(lián)苯醚被正式列入斯德哥爾摩公約,作為含溴阻燃劑的替代品OPEs再次受到環(huán)境科學(xué)家的廣泛關(guān)注,已在全球范圍內(nèi)的多種環(huán)境介質(zhì),包括大氣、水、土壤和生物體中檢測到OPEs[3~10]。與傳統(tǒng)持久性有機污染的研究相比,有關(guān)OPEs的研究進展緩慢,實驗方法的欠缺,依然是制約該類污染物環(huán)境行為研究的主要因素之一。

2012年,由Brandsm等發(fā)起了OPEs的國際實驗室比對,來自9個國家和地區(qū)的實驗室參加了此次比對[11],結(jié)果表明,當(dāng)前OPEs分析主要存在兩方面困難: (1)由于OPEs用途廣泛,測定中的污染物背景干擾已經(jīng)成為該類化合物分析檢測的主要問題,必須有效降低背景污染; (2)對于基質(zhì)成分復(fù)雜的樣品,儀器分析前必須采取嚴(yán)格的凈化步驟去除基質(zhì)干擾。常用的凈化方法包括凝膠滲透色譜(GPC)凈化和固相萃取(SPE)柱凈化,其中GPC凈化不但費時費力,需要大量溶劑,且凈化效果不好。OPEs對強酸強堿都比較敏感,因此以強酸/強堿性吸附材料做填料的SPE也不能應(yīng)用于這類污染物的分離凈化。近年來,以各種硅膠鍵合材料為吸附填料的SPE小柱斷被引入到復(fù)雜樣品中OPEs的分析[5,7]。

本研究對實驗室內(nèi)可能存在OPEs污染的點源進行了初步分析,在嚴(yán)格的背景污染控制條件下,優(yōu)化對比了幾種不同凈化手段對實際樣品中OPEs分離凈化效果,采用氣相色譜/質(zhì)譜(GC/MS)建立了檢測灰塵、土壤和沉積物中7種主要OPEs的分析方法,并應(yīng)用于實際樣品中該類污染物的分析。

2 實驗部分

2.1 儀器與試劑

安捷倫7890N聯(lián)5975C色譜質(zhì)譜聯(lián)用儀(美國安捷倫公司);

1 WANG XiaoWei, LIU JingFu, YIN YongGuang. Prog.In.Chem., 2010, 22(10): 1983-1992

王曉偉, 劉景富, 陰永光. 化學(xué)進展, 2010, 22(10): 1983-1992

2 Lbel G L and Williams D T. Bull. Environ. Contam. Toxicol., 1986, 37(1): 41-46

3 David MD, Seiber,JN. Arch. Environ. Contam. Toxicol., 1999, 36(3): 235-241

4 Moeller A, Xie Z Y, Caba A, Sterm R, Ebinghaus R. Environ. Pollut., 2011, 159(12): 3660-3665

5 Chen D, Letcher R J, Chu S G. J.Chromatogr. A, 2012, 1220(13): 169-174

6 Reemtsma T, Sicco H, Brandsma S H, Boer J D, Cofino W P, Covaci A, Leonards P E. TracTrend Anal. Chem., 2008, 27(9): 727-737

7 YAN XiaoJu,HE Huan, PENG Ying, WANG XiaoMeng, GAO ZhanQi, YANG ShaoGui, SUN Cheng. Chinese J. Anal. Chem., 2012, 40(11): 1693-1696

嚴(yán)小菊, 何 歡, 彭 英, 王曉萌, 高占啟, 楊紹貴, 孫 成. 分析化學(xué), 2012, 40(11): 1693-1696

8 Wang X W, Liu J F,Yin Y G. J. Chromatogr. A, 2011, 1218(38): 6705-6711

9 Cao S X, Zeng X Y, Song H, Li H R, Yu Z Q, Sheng G Y, Fu J M. Environ. Toxicol. Chem., 2012, 31(7): 1478-1484

10 Ma Y Q, Cui K Y, Zeng F, Wen J X, Liu H, Zhu F, Ouyang G F, Luan T G, Zeng Z X. Anal. Chim. Acta, 2013, 786(7): 47-53

11 Brandsma S H, Boer J D, Cofino W P, Covaci A, Leonards P E. TracTrend Anal. Chem., 2013, 43(2): 217-228

12 Cristale J, Lacorte S. J. Chromatogr. A, 2013, 1305(8): 267-275

13 Garcia M, Rodriguez I, Cela R. J.Chromatogr. A, 2007, 1152(12): 280-286

14 Kim J W, Isobe T, Sudaryanto A, Malarvannan G, Chang K H, Muto M, Prudente M, Tanabe S. Environ.Sc. Pollu. Res., 2013, 20(2): 812-822

15 Matthews H B, Eustis S L, Haseman J. Toxicol. Sc., 1993, 20 (4): 477-485

Analysis of Organophosphate Esters in Dust, Soil and Sediment

Samples Using Gas Chromatography Coupled with Mass Spectrometry

LU JianXia1, JI Wen1, MA ShengTao2, YU ZhiQiang2, WANG Zhao1, LI Han1,

REN GuoFa1, FU JiaMo1,2

1(Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering,

Shanghai University, Shanghai 200444, China)

2(State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources,

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract Background contamination is a major problem in the analysis of organophosphate esters (OPEs). In this study, the possible sources of OPEs pollution were screened and several different ways were applied to minimize the blank contamination. Under the strict quality control measures, the cleanup efficiency of different solid phase extraction (SPE) was investigated for OPEs in different environmental matrices. A method was developed for the detection of 7 OPEs in dust, soil and sediment samples by gas chromatograph coupled with mass spectrometry (GC/MS). Target compounds were extracted by hexane:dichloromethane (1∶1, V/V) followed by aminopropyl silica gel SPE column cleanup for dust, and target compounds in soil and sediment were Soxhlet extracted and cleanuped by twostep SPE. The results showed that the aminopropyl silica gel SPE column displayed the best purification performance among the three employed columns. Instrumental detection limits among the 7 OPEs ranged from 2.5 to 25.8 μg/L, and the method limits of quantification (MLOQs) in dust and soil sample ranged from 1.4 to 15.7 ng/g and 0.3 to 2.9 ng/g, respectively. The average recoveries of 7 OPEs in different matrices (dust and soil) at two spiked concentration levels ranged from 67.9% to 117.4%. The proposed method was successfully applied to detect OPEs in different environmental matrices collected in Shanghai.

Keywords Organophosphate flame retardant; Organophosphate esters; Gas chromatograph coupled with mass spectrometry; Soil; Sediment; Dust

(Received 3 December 2013; accepted 21 February 2014)

This work was supported by the National Science Foundation of China (Nos. 21007037, 41273121), National Program for Water Pollution Control (2009ZX0752800204), and Shanghai Leading Academic Disciplines (S30109).

14 Kim J W, Isobe T, Sudaryanto A, Malarvannan G, Chang K H, Muto M, Prudente M, Tanabe S. Environ.Sc. Pollu. Res., 2013, 20(2): 812-822

15 Matthews H B, Eustis S L, Haseman J. Toxicol. Sc., 1993, 20 (4): 477-485

Analysis of Organophosphate Esters in Dust, Soil and Sediment

Samples Using Gas Chromatography Coupled with Mass Spectrometry

LU JianXia1, JI Wen1, MA ShengTao2, YU ZhiQiang2, WANG Zhao1, LI Han1,

REN GuoFa1, FU JiaMo1,2

1(Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering,

Shanghai University, Shanghai 200444, China)

2(State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources,

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract Background contamination is a major problem in the analysis of organophosphate esters (OPEs). In this study, the possible sources of OPEs pollution were screened and several different ways were applied to minimize the blank contamination. Under the strict quality control measures, the cleanup efficiency of different solid phase extraction (SPE) was investigated for OPEs in different environmental matrices. A method was developed for the detection of 7 OPEs in dust, soil and sediment samples by gas chromatograph coupled with mass spectrometry (GC/MS). Target compounds were extracted by hexane:dichloromethane (1∶1, V/V) followed by aminopropyl silica gel SPE column cleanup for dust, and target compounds in soil and sediment were Soxhlet extracted and cleanuped by twostep SPE. The results showed that the aminopropyl silica gel SPE column displayed the best purification performance among the three employed columns. Instrumental detection limits among the 7 OPEs ranged from 2.5 to 25.8 μg/L, and the method limits of quantification (MLOQs) in dust and soil sample ranged from 1.4 to 15.7 ng/g and 0.3 to 2.9 ng/g, respectively. The average recoveries of 7 OPEs in different matrices (dust and soil) at two spiked concentration levels ranged from 67.9% to 117.4%. The proposed method was successfully applied to detect OPEs in different environmental matrices collected in Shanghai.

Keywords Organophosphate flame retardant; Organophosphate esters; Gas chromatograph coupled with mass spectrometry; Soil; Sediment; Dust

(Received 3 December 2013; accepted 21 February 2014)

This work was supported by the National Science Foundation of China (Nos. 21007037, 41273121), National Program for Water Pollution Control (2009ZX0752800204), and Shanghai Leading Academic Disciplines (S30109).

14 Kim J W, Isobe T, Sudaryanto A, Malarvannan G, Chang K H, Muto M, Prudente M, Tanabe S. Environ.Sc. Pollu. Res., 2013, 20(2): 812-822

15 Matthews H B, Eustis S L, Haseman J. Toxicol. Sc., 1993, 20 (4): 477-485

Analysis of Organophosphate Esters in Dust, Soil and Sediment

Samples Using Gas Chromatography Coupled with Mass Spectrometry

LU JianXia1, JI Wen1, MA ShengTao2, YU ZhiQiang2, WANG Zhao1, LI Han1,

REN GuoFa1, FU JiaMo1,2

1(Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering,

Shanghai University, Shanghai 200444, China)

2(State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources,

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract Background contamination is a major problem in the analysis of organophosphate esters (OPEs). In this study, the possible sources of OPEs pollution were screened and several different ways were applied to minimize the blank contamination. Under the strict quality control measures, the cleanup efficiency of different solid phase extraction (SPE) was investigated for OPEs in different environmental matrices. A method was developed for the detection of 7 OPEs in dust, soil and sediment samples by gas chromatograph coupled with mass spectrometry (GC/MS). Target compounds were extracted by hexane:dichloromethane (1∶1, V/V) followed by aminopropyl silica gel SPE column cleanup for dust, and target compounds in soil and sediment were Soxhlet extracted and cleanuped by twostep SPE. The results showed that the aminopropyl silica gel SPE column displayed the best purification performance among the three employed columns. Instrumental detection limits among the 7 OPEs ranged from 2.5 to 25.8 μg/L, and the method limits of quantification (MLOQs) in dust and soil sample ranged from 1.4 to 15.7 ng/g and 0.3 to 2.9 ng/g, respectively. The average recoveries of 7 OPEs in different matrices (dust and soil) at two spiked concentration levels ranged from 67.9% to 117.4%. The proposed method was successfully applied to detect OPEs in different environmental matrices collected in Shanghai.

Keywords Organophosphate flame retardant; Organophosphate esters; Gas chromatograph coupled with mass spectrometry; Soil; Sediment; Dust

(Received 3 December 2013; accepted 21 February 2014)

This work was supported by the National Science Foundation of China (Nos. 21007037, 41273121), National Program for Water Pollution Control (2009ZX0752800204), and Shanghai Leading Academic Disciplines (S30109).

猜你喜歡
污染實驗分析
記一次有趣的實驗
隱蔽失效適航要求符合性驗證分析
做個怪怪長實驗
堅決打好污染防治攻堅戰(zhàn)
電力系統(tǒng)不平衡分析
電子制作(2018年18期)2018-11-14 01:48:24
堅決打好污染防治攻堅戰(zhàn)
電力系統(tǒng)及其自動化發(fā)展趨勢分析
NO與NO2相互轉(zhuǎn)化實驗的改進
實踐十號上的19項實驗
太空探索(2016年5期)2016-07-12 15:17:55
對抗塵污染,遠(yuǎn)離“霾”伏
都市麗人(2015年5期)2015-03-20 13:33:49
主站蜘蛛池模板: 欧美高清视频一区二区三区| 国产欧美在线观看视频| 国产超碰在线观看| 青青青视频91在线 | 国产成人高精品免费视频| 国产噜噜噜视频在线观看| 国产精品香蕉| www.狠狠| 国产美女精品一区二区| 国产人人乐人人爱| 亚洲国产综合自在线另类| 99爱视频精品免视看| 国产91在线免费视频| 性喷潮久久久久久久久| 亚洲人成亚洲精品| 成年人福利视频| 亚洲制服丝袜第一页| 久久国产精品波多野结衣| 亚洲色图狠狠干| 日韩中文无码av超清| 无码免费试看| 日韩小视频在线观看| 国产日韩欧美一区二区三区在线 | 欧美一级爱操视频| 国产精品va免费视频| 欧美精品另类| 最近最新中文字幕在线第一页| 尤物精品国产福利网站| 国产午夜精品一区二区三区软件| 人妻21p大胆| 中文字幕人成乱码熟女免费| a级毛片免费网站| 99视频精品在线观看| 日本AⅤ精品一区二区三区日| 亚洲欧美另类视频| 日韩在线播放中文字幕| 中文字幕免费播放| 看你懂的巨臀中文字幕一区二区| 国产内射在线观看| 国产美女免费| 欧美成人精品在线| 五月婷婷导航| 国产成人精品一区二区| 欧美视频免费一区二区三区| 久久久久久高潮白浆| 日韩免费毛片| 亚洲第一香蕉视频| 大香网伊人久久综合网2020| 日韩免费成人| 天天干天天色综合网| 狼友视频一区二区三区| 欧美日韩另类国产| 四虎精品免费久久| 亚洲国产日韩一区| 91精品国产自产在线观看| 欧美色视频日本| 露脸一二三区国语对白| 91在线播放免费不卡无毒| 国产成a人片在线播放| 特级aaaaaaaaa毛片免费视频| 国产91小视频在线观看| 第九色区aⅴ天堂久久香| 婷婷激情亚洲| 国产成人精品视频一区视频二区| 99人妻碰碰碰久久久久禁片| 午夜色综合| 亚洲乱强伦| 国产在线91在线电影| 国产无遮挡裸体免费视频| 亚洲AV无码乱码在线观看裸奔 | 操操操综合网| 日本AⅤ精品一区二区三区日| 日韩色图在线观看| 小13箩利洗澡无码视频免费网站| 午夜视频免费试看| 又大又硬又爽免费视频| 欧美黑人欧美精品刺激| 欧美翘臀一区二区三区| 福利在线一区| 五月婷婷中文字幕| 青青草国产精品久久久久| 精品国产污污免费网站|