馬廣瑩+鄒清成+劉慧春+周江華+朱開元
摘要:通過高通量測序技術獲得紅掌成花素基因FT,對其進行序列分析,通過與已報道同源基因的比較,預測基因FT能夠顯著促進轉基因植物開花,為開展紅掌分子育種提供了有益基因資源。
關鍵詞:紅掌;克隆;基因FT;信息學;序列分析
中圖分類號: S682.03文獻標志碼: A文章編號:1002-1302(2014)02-0031-02
收稿日期:2013-06-18
基金項目:國家自然科學基金(編號:31200527);浙江省自然科學基金(編號:Q13C150011)。
作者簡介:馬廣瑩(1982—),男,山東梁山人,博士,助理研究員,從事園林植物引種栽培及遺傳育種工作。E-mail:magypetunia@aliyun.com。為實現種群繁衍,植物必須在合適的時間進行生殖生長、開花結果。許多植物調整開花時間的方式是根據環境信號(如日照長短、溫度等)來產生應答反應,植物內源激素和年齡這2個內部信號也可以誘導植物開花。近年來,通過對模式植物擬南芥的分子水平研究,人們總結出“光周期、春化、自主調控以及赤霉素”4條控制植物開花的途徑[1-3]。FLOWERING LOCUS T基因(FT基因)是學術界普遍認可的成花素,于葉片中合成,然后通過韌皮部運輸到頂端分生組織,FT與FD基因互作,誘導下游成花基因的表達,促進開花[4-5]。
擬南芥(Arabidopsis thaliana)中存在6類FT-like基因,都可能參與了成花誘導,這些基因有著共同的PEPB結構域[6]。本研究經轉錄組測序,克隆到了1個紅掌(Anthurium andraeanum)PEPB基因,通過序列對比等生物信息學分析,確定該基因是1種促進開花的功能基因,這為今后通過轉基因手段培育矮化的早花紅掌品種、縮短紅掌育種年限提供了重要的資源。
1材料與方法
1.1試驗材料
紅掌品種為“阿拉巴馬”,取盛花期植株幼嫩葉片、苞片、花序3個組織進行混合,按照美國Invitrogen公司生產的植物RNA提取試劑盒(貨號:12322-012)提取總RNA,構建Illumina文庫,并委托上海美吉生物公司采用Illumina Hiseq 2000對文庫進行測序。
1.2序列分析軟件及分析方法
通過測序獲得的基因序列,經過NCBI 網站ORFFinder軟件進行編碼區預測,然后用http://prosite.expasy.org/網站進行編碼區氨基酸序列預測,并進行序列保守結構域的檢索[7],采用DNAMAN軟件進行多序列氨基酸比對,采用MEGA5進行多物種FT基因進化關系分析[8],建樹方法為Neighbor-joining,bootstrap 1 000次。
2結果與分析
2.1紅掌FT基因獲得
通過測序,獲得了與水稻FT基因相似度較高的1條EST序列,通過比對分析,初步確定其為紅掌FLOWERING LOCUS T基因的同源物,命名為AaFT。如圖1所示,該基因編碼區核苷酸序列有525 bp,其余部分為UTR區域。用該區域序列進行氨基酸推測,得到了174個氨基酸殘基。
2.2AaFT基因生物信息學分析
通過在線軟件分析,不僅推測出該基因的氨基酸序列,還找到了該序列中存在PBP結構域所在的位置,該結構域共計23個氨基酸殘基,序列為YTLVMVDPDAPSPSDPNLREYLH,起始位置為64~86號氨基酸。
為了更好地分析該基因的保守性及與同類基因的相似度,將其與擬南芥FT基因(AtFT)進行序列比較。由圖2可見,擬南芥與紅掌FT基因的序列相似度比較高,二者在FT基因關鍵氨基酸殘基上有著相同的組成,即第85、140號氨基酸殘基分別為酪氨酸、谷酰胺。
用MEGA軟件構建了6種不同物種FT基因的進化樹。從圖3可見,單、雙子葉植物FT基因同源性差異明顯,屬于單子葉植物的紅掌與水稻(Oryza sativa,登錄號:AB052943.1)、蕙蘭(Cymbidium faberi,登錄號:KC138734.1)、蝴蝶蘭(Phalaenopsis hybrid,登錄號:KC138805.1)、小麥(Triticum aestivum,登錄號:AY705794.1)親緣關系較近,聚類時容易聚在一起,而紅掌FT基因與擬南芥相比,親緣關系則明顯較遠,這也與二者分屬單、雙子葉植物類別相對應。
3小結與討論
FT基因作為成花素,受到廣泛關注,目前,已經有非常多植物的FT基因被成功克隆出來,在促進植物開花方面表現十分優異[9]。紅掌作為國內外重要的高檔盆栽花卉,目前育種工作主要集中在常規雜交育種方面,分子育種剛剛起步,紅掌FT基因的克隆為通過轉基因手段快速培育紅掌新品系、縮短雜交育種年限提供了有利條件,也為微型紅掌品種的開發提供了可能。
本試驗通過高通量測序技術獲得了1條包含完整編碼框的FT基因序列,通過比對及生物信息學分析,確定該基因為紅掌FT同源基因。前人研究證明,FT基因家族存在著序列高度相似、功能完全相反的成員——TFL[10-11],但是二者在關鍵氨基酸組成上存在著明顯區別,通過比較分析,本研究所克隆的基因序列在85號及140號氨基酸組成上與擬南芥促進早花的FT基因完全一致,結合相似序列,確定該基因是FT基因,其功能應該是促進植物開花,而非抑制植物開花。
用紅掌FT基因與擬南芥比較,雖然二者分屬于單、雙子葉植物類別,但是兩基因在氨基酸組成的高度相似說明了FT基因在進化過程中保持著穩定性,這可能是其發揮早花功能的必備條件。與多物種FT基因進行聚類分析,發現紅掌FT基因與其他單子葉植物之間存在著較大遺傳距離,說明FT基因雖然功能上保持著穩定性,但隨著物種的進化而不斷發生變異,深入研究該基因及其家族成員,有利于解析不同物種的進化模式。
參考文獻:
[1]Simpson G G,Gendall A R,Dean C. When to switch to flowering[J]. Annual Review of Cell and Developmental Biology,1999,15(1):519-550.
[2]Reeves P H,Coupland G. Response of plant development to environment:control of flowering by daylength and temperature[J]. Current Opinion in Plant Biology,2000,3(1):37-42.
[3]Simpson G G,Arabidopsis D C. Arabidopsis,the rosetta stone of flowering time[J]. Science,2002,296(5566):285-289.
[4]Abe M,Kobayashi Y,Yamamoto S,et al. FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science,2005,309(5737):1052-1056.
[5]Hanzawa Y,Money T,Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(21):7748-7753.
[6]Chardon F,Damerval C. Phylogenomic analysis of the PEBP gene family in cereals[J]. Journal of Molecular Evolution,2005,61(5):579-590.
[7]Artimo P,Jonnalagedda M,Arnold K,et al. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Research,2012,40:W597-W603.
[8]Tamura K,Peterson D,Peterson N,et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739.
[9]Kotoda N,Hayashi H,Suzuki M,et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple(Malus domestica Borkh.)[J]. Plant & Cell Physiology,2010,51(4):561-575.
[10]Ahn J H,Miller D,Winter V J,et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. Embo Journal,2006,25(3):605-614.
[11]Mimida N,Goto K,Kobayashi Y,et al. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue[J]. Genes to Cells,2001,6(4):327-336.
參考文獻:
[1]Simpson G G,Gendall A R,Dean C. When to switch to flowering[J]. Annual Review of Cell and Developmental Biology,1999,15(1):519-550.
[2]Reeves P H,Coupland G. Response of plant development to environment:control of flowering by daylength and temperature[J]. Current Opinion in Plant Biology,2000,3(1):37-42.
[3]Simpson G G,Arabidopsis D C. Arabidopsis,the rosetta stone of flowering time[J]. Science,2002,296(5566):285-289.
[4]Abe M,Kobayashi Y,Yamamoto S,et al. FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science,2005,309(5737):1052-1056.
[5]Hanzawa Y,Money T,Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(21):7748-7753.
[6]Chardon F,Damerval C. Phylogenomic analysis of the PEBP gene family in cereals[J]. Journal of Molecular Evolution,2005,61(5):579-590.
[7]Artimo P,Jonnalagedda M,Arnold K,et al. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Research,2012,40:W597-W603.
[8]Tamura K,Peterson D,Peterson N,et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739.
[9]Kotoda N,Hayashi H,Suzuki M,et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple(Malus domestica Borkh.)[J]. Plant & Cell Physiology,2010,51(4):561-575.
[10]Ahn J H,Miller D,Winter V J,et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. Embo Journal,2006,25(3):605-614.
[11]Mimida N,Goto K,Kobayashi Y,et al. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue[J]. Genes to Cells,2001,6(4):327-336.
參考文獻:
[1]Simpson G G,Gendall A R,Dean C. When to switch to flowering[J]. Annual Review of Cell and Developmental Biology,1999,15(1):519-550.
[2]Reeves P H,Coupland G. Response of plant development to environment:control of flowering by daylength and temperature[J]. Current Opinion in Plant Biology,2000,3(1):37-42.
[3]Simpson G G,Arabidopsis D C. Arabidopsis,the rosetta stone of flowering time[J]. Science,2002,296(5566):285-289.
[4]Abe M,Kobayashi Y,Yamamoto S,et al. FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science,2005,309(5737):1052-1056.
[5]Hanzawa Y,Money T,Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(21):7748-7753.
[6]Chardon F,Damerval C. Phylogenomic analysis of the PEBP gene family in cereals[J]. Journal of Molecular Evolution,2005,61(5):579-590.
[7]Artimo P,Jonnalagedda M,Arnold K,et al. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Research,2012,40:W597-W603.
[8]Tamura K,Peterson D,Peterson N,et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739.
[9]Kotoda N,Hayashi H,Suzuki M,et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple(Malus domestica Borkh.)[J]. Plant & Cell Physiology,2010,51(4):561-575.
[10]Ahn J H,Miller D,Winter V J,et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. Embo Journal,2006,25(3):605-614.
[11]Mimida N,Goto K,Kobayashi Y,et al. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue[J]. Genes to Cells,2001,6(4):327-336.