+王振寅+耿高
摘要:瀝青路面的高溫穩定性是影響路面正常行駛的重要因素。文章通過對骨架密實結構SMA-16和密實懸浮結構AC-13和AC-20瀝青混合料進行馬歇爾穩定度和高溫抗車轍性能測試對比分析,結果顯示:骨架密實結構類型瀝青混合料的抗壓強度和高溫抗車轍性能明顯優于骨架密實結構混合料;另外,對于同一種密實懸浮結構,隨著粒徑的增大,其空隙率越大,抗壓強度和抗車轍能力呈現降低現象。
關鍵詞:不同結構;瀝青混合料;高溫性能;對比分析
隨著經濟的發展,人們生活水平的提高,道路服務水平的上升,瀝青路面以行車舒適,噪音低,易維修等良好的使用性能成為目前世界應用最為廣泛的路面結構材料。據調查研究分析,世界上90%以上的路面形式是瀝青路面。在我國的公路工程建設中,特別是高等級公路,瀝青混合料鋪筑而成的路面得到了較為廣泛的應用。然而,瀝青路面的在荷載和環境的作用下會產生一定的破壞,例如車轍、裂縫、剝落以及坑槽等病害現象;瀝青路面是混合料經過鋪筑壓實而成,不同結構類型的混合料所能承受的荷載以及使用壽命不同,而且不同級配類型的混合料在不同結構層發揮不同的功能,本文通過對不同結夠類型和不同級配類型混合料高溫穩定性能進行測試對比分析,為實際工程的應用提供理論參考。
1原材料技術性質
本研究選用瀝青為SK-70瀝青,經過檢測其技術指標針入度(25℃,100g,5s)為7.3mm,延度(15 ℃)大于100cm,軟化點為46.0℃,針入度指數PI=-0.97,相對密度為1.02;采用的集料為不同粒徑的花崗巖碎石;礦粉采用石灰巖磨碎而成,外觀無結塊,性質良好。混合料的級配采用AC-13,AC-20和SMA-16,級配的確定見表1。試件成型制備,瀝青混合料馬歇爾試件采用雙面分別擊實成型。根據混合料的級配組成,用輪碾法成型尺寸為300x300x50mm車轍板進行高溫抗車轍性能試驗。
表1級配確定
類型 26.5 19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
篩孔/mm
通過率/% AC-13 93.6 75.7 46.1 30.9 24.4 17.6 11.3 7.9 5.7 93.6 75.7 46.1
AC-20 100.0 96.7 87.3 74.1 62.5 48.1 35.5 24.1 19.3 13.3 9.1 6.9
SMA-16 100 100 96 81 55.5 28.4 19.4 15.7 13.9 11.4 11.3 9.7
2體積參數測試對比分析
本研究選用馬歇爾擊實法作為混合料的試件成型方法。混合料的體積參數一定程度上反映了壓實效果和混合料的密實性,經過測試確定三種混合料的油石比,通過對不同類型馬歇爾試件進行測試,結果見表2。
表2不同結構類型混合料體積參數測試結果
混合料類型 瀝青用量/% 毛體積密度/(g/cm3) 空隙率/%
AC-13 4.5 2.5 4.31
AC-20 4.2 2.49 4.52
SMA-16 5.9 2.42 3.97
由上述測試結果可以看出,對于密實懸浮結構的混合料,細粒式混合料AC-13的密度大于中粒式AC-20,AC-13空隙率小于AC-20,說明對于密實懸浮結構的混合料來說,隨著粒徑的增大,密實度降低;而對于骨架空隙結構類型SMA-16的密實效果優于密實懸浮結構。
3馬歇爾強度及抗車轍性能對比分析
評價瀝青混合料的力學性能的典型試驗為馬歇爾穩定度試驗與劈裂試驗。而馬歇爾強度能夠間接反應混合料的抗壓強度,因此,對不同結構類型混合料的馬歇爾強度進行測試分析,測試結果見圖1所示。
在高溫條件和荷載的作用下,路面會產生車轍現象,嚴重影響造成路面的行駛狀況,同時也降低了路面的使用壽命。本研究通過車轍試驗,對不同結構類型混合料的抗車轍能力進行測試分析,評價其高溫穩定性能的差異,測試溫度為60℃,其測試結果見圖2所示。
圖1馬歇爾強度測試結果
圖2動穩定度測試結果
由上圖1測試結果分析,對于骨架密實結構SMA-16的劈裂強度明顯大于AC-13和AC-20的密實懸浮結構混合料,說明SMA結構類型混合料的抗壓強度優于密實懸浮劑結構混合料;另外,對于密實懸浮結構的不同級配混合料來說,AC-13的抗壓強度高于AC-20的強度,說明對于密實懸浮結構來說,隨著粒徑的增大,混合料的抗壓強度呈現降低現象。
由圖2測試結果可以看出,SMA-16,AC-13和AC-20三種不同類型混合料的動穩定度呈現降低趨勢,SMA-16的動穩定度值明顯大于AC-13和AC-20,說明骨架密實結構的高溫抗車轍性能優于密實懸浮結構的混合料;另外,AC-13的動穩定度值高于AC-20的動穩定度,說明級配隨著粒徑的增加,其抗車轍能力有所降低。
4結論
不同結構類型的混合料和不同級配的混合料用于不同的面層結構,可以有效發揮相應的功能,對于密級配來說,粒徑越大,其抗車轍能力越差,而SMA結構類型的抗車轍性能比較優越。因此,在實際工程應用過程中,根據實際條件選用合適的面層結構類型混合料,以便更好的達到路面結構的合理優化。
參考文獻
[1] 張和義.國內高速公路瀝青路面結構發展概述[J].內蒙古公路與運輸,2012(1):24-26.
[2] 沈金安.瀝青及瀝青混合料路用性能[M].北京:人民交通出版社, 2001.
[3] 公路工程集料試驗規程[S].北京:人民交通出版社,2000.
[4] JTJ 052-2000.公路工程瀝青及瀝青混合料試驗規程[S].
摘要:瀝青路面的高溫穩定性是影響路面正常行駛的重要因素。文章通過對骨架密實結構SMA-16和密實懸浮結構AC-13和AC-20瀝青混合料進行馬歇爾穩定度和高溫抗車轍性能測試對比分析,結果顯示:骨架密實結構類型瀝青混合料的抗壓強度和高溫抗車轍性能明顯優于骨架密實結構混合料;另外,對于同一種密實懸浮結構,隨著粒徑的增大,其空隙率越大,抗壓強度和抗車轍能力呈現降低現象。
關鍵詞:不同結構;瀝青混合料;高溫性能;對比分析
隨著經濟的發展,人們生活水平的提高,道路服務水平的上升,瀝青路面以行車舒適,噪音低,易維修等良好的使用性能成為目前世界應用最為廣泛的路面結構材料。據調查研究分析,世界上90%以上的路面形式是瀝青路面。在我國的公路工程建設中,特別是高等級公路,瀝青混合料鋪筑而成的路面得到了較為廣泛的應用。然而,瀝青路面的在荷載和環境的作用下會產生一定的破壞,例如車轍、裂縫、剝落以及坑槽等病害現象;瀝青路面是混合料經過鋪筑壓實而成,不同結構類型的混合料所能承受的荷載以及使用壽命不同,而且不同級配類型的混合料在不同結構層發揮不同的功能,本文通過對不同結夠類型和不同級配類型混合料高溫穩定性能進行測試對比分析,為實際工程的應用提供理論參考。
1原材料技術性質
本研究選用瀝青為SK-70瀝青,經過檢測其技術指標針入度(25℃,100g,5s)為7.3mm,延度(15 ℃)大于100cm,軟化點為46.0℃,針入度指數PI=-0.97,相對密度為1.02;采用的集料為不同粒徑的花崗巖碎石;礦粉采用石灰巖磨碎而成,外觀無結塊,性質良好。混合料的級配采用AC-13,AC-20和SMA-16,級配的確定見表1。試件成型制備,瀝青混合料馬歇爾試件采用雙面分別擊實成型。根據混合料的級配組成,用輪碾法成型尺寸為300x300x50mm車轍板進行高溫抗車轍性能試驗。
表1級配確定
類型 26.5 19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
篩孔/mm
通過率/% AC-13 93.6 75.7 46.1 30.9 24.4 17.6 11.3 7.9 5.7 93.6 75.7 46.1
AC-20 100.0 96.7 87.3 74.1 62.5 48.1 35.5 24.1 19.3 13.3 9.1 6.9
SMA-16 100 100 96 81 55.5 28.4 19.4 15.7 13.9 11.4 11.3 9.7
2體積參數測試對比分析
本研究選用馬歇爾擊實法作為混合料的試件成型方法。混合料的體積參數一定程度上反映了壓實效果和混合料的密實性,經過測試確定三種混合料的油石比,通過對不同類型馬歇爾試件進行測試,結果見表2。
表2不同結構類型混合料體積參數測試結果
混合料類型 瀝青用量/% 毛體積密度/(g/cm3) 空隙率/%
AC-13 4.5 2.5 4.31
AC-20 4.2 2.49 4.52
SMA-16 5.9 2.42 3.97
由上述測試結果可以看出,對于密實懸浮結構的混合料,細粒式混合料AC-13的密度大于中粒式AC-20,AC-13空隙率小于AC-20,說明對于密實懸浮結構的混合料來說,隨著粒徑的增大,密實度降低;而對于骨架空隙結構類型SMA-16的密實效果優于密實懸浮結構。
3馬歇爾強度及抗車轍性能對比分析
評價瀝青混合料的力學性能的典型試驗為馬歇爾穩定度試驗與劈裂試驗。而馬歇爾強度能夠間接反應混合料的抗壓強度,因此,對不同結構類型混合料的馬歇爾強度進行測試分析,測試結果見圖1所示。
在高溫條件和荷載的作用下,路面會產生車轍現象,嚴重影響造成路面的行駛狀況,同時也降低了路面的使用壽命。本研究通過車轍試驗,對不同結構類型混合料的抗車轍能力進行測試分析,評價其高溫穩定性能的差異,測試溫度為60℃,其測試結果見圖2所示。
圖1馬歇爾強度測試結果
圖2動穩定度測試結果
由上圖1測試結果分析,對于骨架密實結構SMA-16的劈裂強度明顯大于AC-13和AC-20的密實懸浮結構混合料,說明SMA結構類型混合料的抗壓強度優于密實懸浮劑結構混合料;另外,對于密實懸浮結構的不同級配混合料來說,AC-13的抗壓強度高于AC-20的強度,說明對于密實懸浮結構來說,隨著粒徑的增大,混合料的抗壓強度呈現降低現象。
由圖2測試結果可以看出,SMA-16,AC-13和AC-20三種不同類型混合料的動穩定度呈現降低趨勢,SMA-16的動穩定度值明顯大于AC-13和AC-20,說明骨架密實結構的高溫抗車轍性能優于密實懸浮結構的混合料;另外,AC-13的動穩定度值高于AC-20的動穩定度,說明級配隨著粒徑的增加,其抗車轍能力有所降低。
4結論
不同結構類型的混合料和不同級配的混合料用于不同的面層結構,可以有效發揮相應的功能,對于密級配來說,粒徑越大,其抗車轍能力越差,而SMA結構類型的抗車轍性能比較優越。因此,在實際工程應用過程中,根據實際條件選用合適的面層結構類型混合料,以便更好的達到路面結構的合理優化。
參考文獻
[1] 張和義.國內高速公路瀝青路面結構發展概述[J].內蒙古公路與運輸,2012(1):24-26.
[2] 沈金安.瀝青及瀝青混合料路用性能[M].北京:人民交通出版社, 2001.
[3] 公路工程集料試驗規程[S].北京:人民交通出版社,2000.
[4] JTJ 052-2000.公路工程瀝青及瀝青混合料試驗規程[S].
摘要:瀝青路面的高溫穩定性是影響路面正常行駛的重要因素。文章通過對骨架密實結構SMA-16和密實懸浮結構AC-13和AC-20瀝青混合料進行馬歇爾穩定度和高溫抗車轍性能測試對比分析,結果顯示:骨架密實結構類型瀝青混合料的抗壓強度和高溫抗車轍性能明顯優于骨架密實結構混合料;另外,對于同一種密實懸浮結構,隨著粒徑的增大,其空隙率越大,抗壓強度和抗車轍能力呈現降低現象。
關鍵詞:不同結構;瀝青混合料;高溫性能;對比分析
隨著經濟的發展,人們生活水平的提高,道路服務水平的上升,瀝青路面以行車舒適,噪音低,易維修等良好的使用性能成為目前世界應用最為廣泛的路面結構材料。據調查研究分析,世界上90%以上的路面形式是瀝青路面。在我國的公路工程建設中,特別是高等級公路,瀝青混合料鋪筑而成的路面得到了較為廣泛的應用。然而,瀝青路面的在荷載和環境的作用下會產生一定的破壞,例如車轍、裂縫、剝落以及坑槽等病害現象;瀝青路面是混合料經過鋪筑壓實而成,不同結構類型的混合料所能承受的荷載以及使用壽命不同,而且不同級配類型的混合料在不同結構層發揮不同的功能,本文通過對不同結夠類型和不同級配類型混合料高溫穩定性能進行測試對比分析,為實際工程的應用提供理論參考。
1原材料技術性質
本研究選用瀝青為SK-70瀝青,經過檢測其技術指標針入度(25℃,100g,5s)為7.3mm,延度(15 ℃)大于100cm,軟化點為46.0℃,針入度指數PI=-0.97,相對密度為1.02;采用的集料為不同粒徑的花崗巖碎石;礦粉采用石灰巖磨碎而成,外觀無結塊,性質良好。混合料的級配采用AC-13,AC-20和SMA-16,級配的確定見表1。試件成型制備,瀝青混合料馬歇爾試件采用雙面分別擊實成型。根據混合料的級配組成,用輪碾法成型尺寸為300x300x50mm車轍板進行高溫抗車轍性能試驗。
表1級配確定
類型 26.5 19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
篩孔/mm
通過率/% AC-13 93.6 75.7 46.1 30.9 24.4 17.6 11.3 7.9 5.7 93.6 75.7 46.1
AC-20 100.0 96.7 87.3 74.1 62.5 48.1 35.5 24.1 19.3 13.3 9.1 6.9
SMA-16 100 100 96 81 55.5 28.4 19.4 15.7 13.9 11.4 11.3 9.7
2體積參數測試對比分析
本研究選用馬歇爾擊實法作為混合料的試件成型方法。混合料的體積參數一定程度上反映了壓實效果和混合料的密實性,經過測試確定三種混合料的油石比,通過對不同類型馬歇爾試件進行測試,結果見表2。
表2不同結構類型混合料體積參數測試結果
混合料類型 瀝青用量/% 毛體積密度/(g/cm3) 空隙率/%
AC-13 4.5 2.5 4.31
AC-20 4.2 2.49 4.52
SMA-16 5.9 2.42 3.97
由上述測試結果可以看出,對于密實懸浮結構的混合料,細粒式混合料AC-13的密度大于中粒式AC-20,AC-13空隙率小于AC-20,說明對于密實懸浮結構的混合料來說,隨著粒徑的增大,密實度降低;而對于骨架空隙結構類型SMA-16的密實效果優于密實懸浮結構。
3馬歇爾強度及抗車轍性能對比分析
評價瀝青混合料的力學性能的典型試驗為馬歇爾穩定度試驗與劈裂試驗。而馬歇爾強度能夠間接反應混合料的抗壓強度,因此,對不同結構類型混合料的馬歇爾強度進行測試分析,測試結果見圖1所示。
在高溫條件和荷載的作用下,路面會產生車轍現象,嚴重影響造成路面的行駛狀況,同時也降低了路面的使用壽命。本研究通過車轍試驗,對不同結構類型混合料的抗車轍能力進行測試分析,評價其高溫穩定性能的差異,測試溫度為60℃,其測試結果見圖2所示。
圖1馬歇爾強度測試結果
圖2動穩定度測試結果
由上圖1測試結果分析,對于骨架密實結構SMA-16的劈裂強度明顯大于AC-13和AC-20的密實懸浮結構混合料,說明SMA結構類型混合料的抗壓強度優于密實懸浮劑結構混合料;另外,對于密實懸浮結構的不同級配混合料來說,AC-13的抗壓強度高于AC-20的強度,說明對于密實懸浮結構來說,隨著粒徑的增大,混合料的抗壓強度呈現降低現象。
由圖2測試結果可以看出,SMA-16,AC-13和AC-20三種不同類型混合料的動穩定度呈現降低趨勢,SMA-16的動穩定度值明顯大于AC-13和AC-20,說明骨架密實結構的高溫抗車轍性能優于密實懸浮結構的混合料;另外,AC-13的動穩定度值高于AC-20的動穩定度,說明級配隨著粒徑的增加,其抗車轍能力有所降低。
4結論
不同結構類型的混合料和不同級配的混合料用于不同的面層結構,可以有效發揮相應的功能,對于密級配來說,粒徑越大,其抗車轍能力越差,而SMA結構類型的抗車轍性能比較優越。因此,在實際工程應用過程中,根據實際條件選用合適的面層結構類型混合料,以便更好的達到路面結構的合理優化。
參考文獻
[1] 張和義.國內高速公路瀝青路面結構發展概述[J].內蒙古公路與運輸,2012(1):24-26.
[2] 沈金安.瀝青及瀝青混合料路用性能[M].北京:人民交通出版社, 2001.
[3] 公路工程集料試驗規程[S].北京:人民交通出版社,2000.
[4] JTJ 052-2000.公路工程瀝青及瀝青混合料試驗規程[S].