999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Diffusion Relaxation Approximation of the Incompressible Navier-Stokes Equations

2014-08-08 02:56:00LIUYanhuiYANGJianwei

LIU Yanhui,YANG Jianwei

(1.Faculty of Science,Hunan Institute of Engineering,Xiangtan 411104,Hunan;2.College of Mathematics and Information Science,North China University of Water Resources and Electric Power,Zhengzhou 450011,Henan)

1 Introduction

Let us consider the following system

for(x,t)∈T2×[0,T],whereT2=(R/Z)2is the unit periodic square.The unknowns aren∈R,u∈R2,V∈R2,2and φ∈R.

Now,let us consider a diffusive scaling,namely,for τ>0,we set

Therefore system(1)becomes

In this paper we shall prove that,under some suitable assumptions,the solutions to(3)converge,when τ goes to 0,to the(smooth)solutions of the incompressible Navier-Stokes equations

The aim of this note is to give a rigorous justification to this formal computation by using the hyperbolic energy method.

There have been a lot of studies on the diffusive scalinghas been largely investigated in the framework of hydrodynamic limit of the Boltzmann equation[1]and in the analysis of hyperbolic-parabolic relaxation limits for weak solutions of hyperbolic systems of balance laws with strongly diffusive source term[2-3].Brenier et al[4]study the relaxation approximation of the incompressible version of present relaxation system by using the modulated energy method.For other diffusive relaxation models and some useful results,the reader is refered to[5-11].

Here we state the main differences between the present paper and [7].First,the convergence rates obtained in two papers are different.Second,the new unknowns introduced by us are also different from[7].Therefore,each equation of the error system in present paper involves singular term which is different from[7].Finally,we give the convergence rate forVwhich has not been given in[7].We noticed that the method used in[7]can also obtain our result.

2 The main result

In this section,we state our main theorem.For this,we first recall the following classical result on the existence of sufficiently regular solutions of the incompressible Euler equation[12-13].

3 Proof of theorem 2.1

3.1 Reformulation of the system with new unknownsAs in[14],we define the new unknownsn1,d1,ω1,D1,Ω1as

with(u0,φ0)the solution of(4),and ω0=curlu0.Moreover,D0=divV0and Ω0=curlV0.Note that by taking the divergence of the second equation in(4)the pressure is given by

Then,from system(3)we know the vector(n1,d1,ω1,D1,Ω1)solves the system

Here,we have used the fact that

3.2 Energy estimatesFor|α|≤s-1 withs≥4,let us set

Taking theL2inner product of the equations in(8)with,respectively,one gets,by integration by parts and using Cauchy-Schwartz's inequality,Sobolev's lemma,basic Moser-type calculus inequalities[15]that

By an integration by parts,we have

The termsI2andI3are easily estimated by

Therefore,we obtain the estimate

Combining(9)with(12)~(16)together and summing this over all multiindexes α≤s-1,one gets

Then by the Gronwall inequality and the initial data assumption(6)we can conclude,that if the solution(u0,φ0)of incompressible Navier-Stokes equations(4)is smooth on the time interval[0,T],for anyT1<Tthere exists τ0such that the sequence(n1,d1,ω1,D1,Ω1) ‖τ<τ0is bounded inC([0,T],Hs-1(T2)).Then we have

This proves Theorem 2.1.

AcknowledgmentsThe authors are very grateful to both referees for their constructive comments and helpful suggestions,which considerably improved the presentation of the paper.

[1]Bouchut F,Golse F,Pulvirenti M.Kinetic Equations and Asymptotic Theory[M].Paris:Gauthiers-Villars,2000.

[2]Donatelli D,Marcati P.Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems[J].Trans Am Math Soc,2004,356:2093-2121.

[3]Marcati P,Rubino B.Hyperbolic to parabolic relaxation theory for quasilinear first order systems[J].J Diff Eqns,2000,162:359-399.

[4]Brenier Y,Natalini R,Puel M.On a relaxation approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2004,132:1021-1028.

[5]Jin S,Liu H L.Diffusion limit of a hyperbolic system with relaxation[J].Meth Appl Anal,1998,5:317-334.

[6]Yong W A.Relaxation limit of multi-dimensional isentropic hydrodynamical models for semiconductors[J].SIAM J Appl Math,2004,64:1737-1748.

[7] Natalini R,Rousset F.Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2006,134:2251-2258.

[8]Xu J,Yong W A.Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors[J].J Diff Eqns,2009,247:1777-1795.

[9]Yang J W,Wang S.The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas[J].J Math Anal Appl,2011,380:343-353.

[10]廖為,蒲志林.一類擬線性橢圓型方程Dirichlet問題正解的存在性[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2007,30(1):31-35.

[11]李傳華,馮春華.一類二階常p-Laplace系統(tǒng)周期解的存在性[J].廣西師范大學(xué)學(xué)報(bào):自然科學(xué)版,2011,29(3):28-32.

[12]McGrath F J.Nonstationary plane flow of viscous and ideal fluds[J].Arch Rational Mech Anal,1968,27:229-348.

[13]Kato T.Nonstationary flow of viscous and ideal fluids in R3[J].J Funct Anal,1972,9:296-305.

[14]Loeper G.Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems[J].Commun Partial Diff Eqns,2005,30:1141-1167.

[15]Taylor M E.Partial Differential Equations(III)of Applied Mathematical Sciences[M].New York:Springer-Verlag,1997.

主站蜘蛛池模板: 四虎国产精品永久一区| 又大又硬又爽免费视频| 米奇精品一区二区三区| 97在线碰| 丝袜久久剧情精品国产| 真实国产乱子伦高清| 国产成人精品视频一区二区电影| 国产精品 欧美激情 在线播放| 国内自拍久第一页| 成人中文在线| 一本久道热中字伊人| 欧洲亚洲欧美国产日本高清| 91久久国产成人免费观看| 日本妇乱子伦视频| 免费不卡视频| 国产精品亚洲αv天堂无码| 亚洲黄网在线| 999福利激情视频| 亚洲精品无码抽插日韩| 国产91久久久久久| 亚洲天堂777| 无码中文字幕乱码免费2| 国产18在线播放| 天堂网亚洲系列亚洲系列| 2048国产精品原创综合在线| 无码人中文字幕| 妇女自拍偷自拍亚洲精品| 美女裸体18禁网站| 日韩成人在线一区二区| 伊人激情综合| 日韩精品资源| 欧美中文字幕在线二区| www.日韩三级| 深爱婷婷激情网| 91国语视频| 天天操精品| 久久一本精品久久久ー99| 美女免费黄网站| 999精品视频在线| 国产流白浆视频| 亚洲第一天堂无码专区| 日韩在线中文| 99久久精品免费看国产电影| 精品少妇人妻一区二区| 人妻丰满熟妇av五码区| 国产91小视频| 中文字幕日韩视频欧美一区| 欧美成一级| 欧美日韩第二页| 在线看免费无码av天堂的| 国产精品lululu在线观看| 免费观看男人免费桶女人视频| 久草国产在线观看| 久久综合伊人77777| 四虎免费视频网站| 亚洲成aⅴ人在线观看| 欧美色99| 毛片免费视频| 国产激情在线视频| 成人福利视频网| 亚洲AV无码久久精品色欲| 亚洲精品国产首次亮相| 视频一区亚洲| 久久久精品无码一区二区三区| 国产精品亚欧美一区二区| 韩日免费小视频| 国产精品嫩草影院av| 成人免费视频一区| 欧美综合区自拍亚洲综合绿色 | 久久这里只有精品2| 第一页亚洲| 久久黄色影院| 久久性妇女精品免费| 亚洲成肉网| swag国产精品| 亚洲区视频在线观看| 欧美国产日韩一区二区三区精品影视| 日韩欧美国产中文| 99久久精品国产自免费| 456亚洲人成高清在线| 大陆精大陆国产国语精品1024| 超碰91免费人妻|