胥月 湯純靜 黃宏 孫超群 張亞鯤 葉群峰 王愛軍
摘要本實驗以蘋果汁為原料,通過一步水熱法合成得到了水溶性好及穩定性高的藍色熒光碳量子點。研究發現Hg2+對碳量子點熒光有良好的猝滅作用,從而建立了一種快速檢測Hg2+的新方法。實驗發現在pH 7.0 磷酸鹽緩沖介質中碳量子點熒光猝滅強度與Hg2+濃度在5~100 nmol/L和1~50 μmol/L范圍內呈線性關系,檢出限為2.3 nmol/L(S/N=3)。本方法可用于實際水樣中Hg2+的測定。
關鍵詞碳量子點; 綠色合成; 蘋果汁; 汞離子檢測
1引言
汞離子(Hg2+)是毒性較高的重金屬離子之一。它能夠通過食物鏈產生富集效果,最終在人體內積累,對人類的健康和生命造成嚴重威脅,如大腦及中樞神經的損傷、腎臟衰竭、DNA破壞等\[1\]。因此,對汞污染的研究逐漸成為各國環境工作者研究的熱點。目前,Hg2+的檢測方法有比色法\[2\]、電化學法\[3\]、熒光光譜法\[4\]及原子發射光譜法\[5\]等。相比于其它幾種方法,熒光光譜法具有靈敏度高、選擇性好、用樣量少、方法簡便、工作曲線線性范圍寬等優點。
熒光碳量子點(CQDs)是一種尺寸小于10 nm的碳納米顆粒[6]。與傳統有機染料及半導體量子點相比,熒光碳量子點不僅具有光學性質穩定和易于實現表面功能化等優勢,還具有生物相容性好和細胞毒性低等特性\[7,8\]。因此,熒光碳量子點有廣泛的應用前景,包括生物成像\[9\]、傳感\[10,11\]、藥物傳遞\[12\]和光催化\[13\]等。目前,研究者建立了多種制備熒光碳量子點的方法,如電弧放電法\[14\]、激光刻蝕法\[15\]、電化學法\[16\]、化學氧化法\[17\]、水熱法\[18\]、超聲處理\[19\]和微波輻射法\[20\]。其中,水熱法被認為是一種簡單、高效制備熒光碳量子點的方法。Liu等\[21\]通過水熱法處理草制備出氮摻雜碳量子點,并用于構建銅離子傳感器。
本實驗以蘋果汁為原料,通過一步水熱法獲得有藍色熒光的碳量子點。合成的碳量子點可以用于環境水樣中Hg2+的快速檢測。
2實驗部分
2.1儀器與試劑
JEOL 2100F 場發射透射電鏡(TEM,日本電子公司);Lambda 950 紫外可見分光光度計, LS45 熒光分光光度計(珀金埃爾默儀器有限公司);Nicolet NEXUS670 紅外光譜儀(FTIR,美國熱電尼高力公司);X射線光電子能譜儀(XPS,賽默飛世爾科技)。
2.2實驗方法
量取35 mL蘋果汁并轉移至50 mL聚四氟乙烯反應釜中。將反應釜置于烘箱中于180 ℃下加熱12 h。反應結束后,自然冷卻至室溫。用孔徑為0.22 μm 微孔濾膜將反應液過濾后,將濾液在15000 r/min轉速下離心30 min, 除去大顆粒雜質,以制得純凈的碳量子點溶液。將純化后的溶液放在真空干燥箱中干燥72 h后,配制成濃度為1 g/L的溶液,4 ℃保存。
將5 μL碳量子點溶液(1 g/L)加入1 mL磷酸鹽緩沖溶液(25 mmol/L, pH 7.0)中,混合均勻后測定其熒光強度。加入不同量的Hg2+ 室溫下反應10 min后,測定相應的熒光光譜(圖1)。
3結果與討論
3.1碳量子點的表征及性質研究
如圖2A,所制備的碳量子點呈圓球形,分散性好,且尺寸均一。高分辨TEM圖(圖2A插圖)表明,碳量子點的晶格間距為0.205 nm,對應于石墨的(102)晶面\[22\]。通過測量100個碳量子點得到的粒徑,得到相應的粒徑分布圖。由圖2B可知,碳量子點的粒徑為(2.8 ± 0.4)nm。
然而,鮮榨的蘋果汁在262 nm處有吸收峰。碳量子點的最大發射峰位于428 nm,最大激發波長為340 nm,而蘋果汁沒有熒光現象。這說明在碳量子點的合成過程中水熱處理至關重要。蘋果汁的主要成分是碳水化合物,如葡萄糖、蔗糖、果糖和抗壞血酸等,因此,在碳量子點的合成中可能涉及到這些碳水化合物的脫水、聚合及碳化等過程\[24\]。與文獻報道一致\[25,26\],該碳量子點的熒光發射峰位置和強度與激發波長相關。改變激發波長,發射峰也隨之改變,并且強度亦發生變化。如圖3B所示,當激發波長由330 nm增加到430 nm時,發射波長由426 nm紅移至502 nm,同時強度逐漸降低。以硫酸奎寧(54%, 0.1 mol/L H2SO4)為參考物質,測得碳量子點的熒光量子產率為6.4%。利用FTIR和XPS等技術對碳量子點的結構和表面基團進行表征。圖4A為碳量子點的XPS全譜圖。在533.6和283.3 eV處有兩個峰,分別為O1s和C1s。這表明碳量子點主要由O和C元素組成。對C1s進行分峰,得到4個峰(圖4B):284.8,286.2,287.9和289.1 eV 分別對應于CC,CO,CO與OCO[23]。O1s分峰后得到532.7和531.9 eV兩個峰(圖4C),分別對應于COH/COC和CO[27]。Symbolm@@ 1處的吸收分別對應于CC和CO的伸縮振動\[28\]。這些含氧基團的存在說明碳量子點有很好的水溶性。FTIR和XPS兩種實驗所得的數據是一致的。[TS(][HT5”SS]圖4(A)碳量子點的XPS全譜圖;(B)C1s;(C)O1s;(D)FTIR圖譜
Fig.4(A) Survey, highresolution (B) C1s, (C) O1s XPS spectra of CQDs and (D) corresponding FTIR spectra [HT5][TS)]
研究了碳量子點在不同條件下的穩定性。碳量子點在不同NaCl溶液中的穩定性實驗結果見圖5A,碳量子點的熒光強度與NaCl溶液濃度無關(高達1 mol/L)。當溶液pH值在3~11內變化時,碳量子點熒光強度變化甚微,表明碳量子點熒光強度不隨pH 值變化(圖5B)。此外,用氙燈(500 W)照射碳量子點溶液7 h,碳量子點熒光強度幾乎不變(圖5C)。在室溫下放置3個月,碳量子點熒光強度也很穩定(圖5D)。這些實驗結果說明此碳量子點穩定性較好。
[TS(][HT5”SS]圖5(A)不同濃度的NaCl 溶液;(B)pH;(C)光照時間及(D)放置時間對碳量子點溶液熒光強度的影響
Fig.5Effects of the concentration of NaCl solution (A), pH values (B), irradiation time (C), and storage time (D) on the fluorescence intensity of the CQDs[HT5][TS)]
3.2反應條件的優化
如圖6A所示,加入Hg2+后體系熒光強度急劇下降,10 min后熒光強度趨于穩定,表明Hg2+與碳量子點之間反應快速。故在后續研究中反應時間為10 min。不同pH值下,Hg2+對體系熒光強度影響不同(圖6B)。在pH=7.0時對體系熒光強度的影響最大,故本實驗選擇pH為7.0。如圖6C所示,當碳量子點溶液濃度為5 μg/mL時,Hg2+ 對其熒光猝滅程度最大。
3.4碳量子點對Hg2+的響應曲線
考察了Hg2+濃度對碳量子點熒光的猝滅程度。如圖8A所示,隨著Hg2+濃度增加,體系的熒光強度逐漸降低。Hg2+濃度為5~100 nmol/L (F/F0=0.9827-0.8485C, R=0.9943)和1~50 μmol/L(F/F0=0.8565-0.0033C, R=0.9913)時與碳量子點熒光猝滅程度呈線性關系(圖8B),檢出限為2.3 nmol/L(S/N=3)。將構建的Hg2+傳感器性能與基于其它熒光納米材料的Hg2+傳感器進行比較(表1),發現此傳感器具有檢出限低和線性范圍較寬等優點。
4結論
以蘋果汁為原料,通過一步水熱法合成了水溶性好且穩定性高的熒光碳量子點。基于痕量Hg2+對碳量子點熒光的強猝滅作用建立了一種快速測定Hg2+的新方法。本方法可用于實際水樣中Hg2+的測定,在環境監控與分析方面有廣闊的應用前景。
References
1Clarkson T W, Magos L. Crit. Rev. Toxicol., 2006, 36(8): 609-662
2Li T, Dong S J, Wang E K. Anal. Chem., 2009, 81(6): 2144-2149
3Liu S J, Nie H G, Jiang J H, Shen G L, Yu R Q. Anal. Chem., 2009, 81(14): 5724-5730
4Li H L,Zhai J F, Tian J Q, Luo Y L, Sun X P. Biosens. Bioelectron., 2011, 26(12): 4656-4660
5Han F X, Patterson W D, Xia Y J, Sridhar B M, Su Y. Water Air Soil Pollut., 2006, 170(4): 161-171
6HU ShengLiang, BAI PeiKang, CAO ShiRui, SUN Jing. Chem. J. Chinese Universities, 2009, 30(8): 1497-1500
胡勝亮, 白培康, 曹士銳, 孫 景. 高等學校化學學報, 2009, 30(8): 1497-1500
7Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49(38): 6726-6744
8Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22(46): 24230-24253
9Kong B, Zhu A W, Ding C Q, Zhao X M, Li B, Tian Y. Adv. Mater., 2012, 24(43): 5844-5848
10Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z. ACS Appl. Mater. Interfaces, 2013, 5(24): 13242-13247
11Jahan S, Mansoor F, Naz S, Lei J, Kanwal S. Anal. Chem., 2013, 85(21): 10232-10239
12Wang Q L, Huang X X, Long Y J, Wang X L, Zhang H J, Zhu R, Liang L P, Teng P, Zheng H Z. Carbon, 2013, 59: 192-199
13Li H T, He X D, Kang Z H, Huang H, Liu Yang, Liu J L, Lian S Y, Tsang C H, Yang X B, Lee S T. Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434
14Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736-12737
15Hu S L, Niu K Y, Sun J, Yang J, Zhao N Q, Du X W. J. Mater. Chem., 2009, 19(4): 484-488
16Qu Q, Zhu A W, Shao X L, Shi G Y, Tian Y. Chem. Commun., 2012, 48(44): 5473-5475
17Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21): 5895-5899
18Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835-8837
19Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6(2): 1059-1064
20Liu S, Wang L, Tian J Q, Zhai J F, Luo Y L, Lu W B, Sun X P. RSC Adv., 2011, 1(6): 951-953
21Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041
22Huang H, Xu Y, Tang C J, Chen J R, Wang A J, Feng J J. New J. Chem., 2014, 38(2): 784-789
23Huang H, Lv J J, Zhou D L,Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3(44): 21691-21696
24De B, Karak N. RSC Adv., 2013, 3(22): 8286-8290
25Liu S, Tian J Q, Wang L, Luo Y L, Zhai J F, Sun X P. J. Mater. Chem., 2011, 21(32): 11726-11729
26Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1): 15-18
27Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Anal. Chem., 2012, 84(12): 5351-5357
28Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873
29Yang X, Zhu Y, Liu P, He L, Li Q, Wang Q, Wang K, Huang J, Liu J. Anal. Methods, 2012, 4(4): 895-897
30Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416
31Zhou T, Huang Y, Cai Z, Luo F, Yang C J, Chen X. Nanoscale, 2012, 4(17): 5312-5315
32Liang A N, Wang L, Chen H Q, Qian B B, Ling B, Fu J. Talanta, 2010, 81(1): 438-443
33Duan J, Song L, Zhan J. Nano Res., 2009, 2(1): 61-68
34Paramanik B, Bhattacharyya S, Patra A. Chem. Eur. J., 2013, 19(19): 5980-5987
AbstractFluorescent carbon quantum dots (CQDs) were synthesized by onestep hydrothermal treatment of apple juice. Experiments showed that Hg2+ could quench the fluorescence of the CQDs with specificity. Based on this phenomenon, a selective and sensitive sensor was constructed for Hg2+ detection. In a NaH2PO4Na2HPO4 buffer solution (pH 7.0), their fluorescence intensity showed good linear relationship with the concentrations of Hg2+ from 5 to 100 nmol/L and 1 to 50 μmol/L, respectively, with the detection limit of 2.3 nmol/L (S/N=3). Its practical application was further demonstrated by the detection of Hg2+ in real water samples.
KeywordsCarbon quantum dots; Green synthesis; Apple juice; Mercury detection
17Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21): 5895-5899
18Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835-8837
19Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6(2): 1059-1064
20Liu S, Wang L, Tian J Q, Zhai J F, Luo Y L, Lu W B, Sun X P. RSC Adv., 2011, 1(6): 951-953
21Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041
22Huang H, Xu Y, Tang C J, Chen J R, Wang A J, Feng J J. New J. Chem., 2014, 38(2): 784-789
23Huang H, Lv J J, Zhou D L,Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3(44): 21691-21696
24De B, Karak N. RSC Adv., 2013, 3(22): 8286-8290
25Liu S, Tian J Q, Wang L, Luo Y L, Zhai J F, Sun X P. J. Mater. Chem., 2011, 21(32): 11726-11729
26Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1): 15-18
27Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Anal. Chem., 2012, 84(12): 5351-5357
28Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873
29Yang X, Zhu Y, Liu P, He L, Li Q, Wang Q, Wang K, Huang J, Liu J. Anal. Methods, 2012, 4(4): 895-897
30Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416
31Zhou T, Huang Y, Cai Z, Luo F, Yang C J, Chen X. Nanoscale, 2012, 4(17): 5312-5315
32Liang A N, Wang L, Chen H Q, Qian B B, Ling B, Fu J. Talanta, 2010, 81(1): 438-443
33Duan J, Song L, Zhan J. Nano Res., 2009, 2(1): 61-68
34Paramanik B, Bhattacharyya S, Patra A. Chem. Eur. J., 2013, 19(19): 5980-5987
AbstractFluorescent carbon quantum dots (CQDs) were synthesized by onestep hydrothermal treatment of apple juice. Experiments showed that Hg2+ could quench the fluorescence of the CQDs with specificity. Based on this phenomenon, a selective and sensitive sensor was constructed for Hg2+ detection. In a NaH2PO4Na2HPO4 buffer solution (pH 7.0), their fluorescence intensity showed good linear relationship with the concentrations of Hg2+ from 5 to 100 nmol/L and 1 to 50 μmol/L, respectively, with the detection limit of 2.3 nmol/L (S/N=3). Its practical application was further demonstrated by the detection of Hg2+ in real water samples.
KeywordsCarbon quantum dots; Green synthesis; Apple juice; Mercury detection
17Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21): 5895-5899
18Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835-8837
19Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6(2): 1059-1064
20Liu S, Wang L, Tian J Q, Zhai J F, Luo Y L, Lu W B, Sun X P. RSC Adv., 2011, 1(6): 951-953
21Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041
22Huang H, Xu Y, Tang C J, Chen J R, Wang A J, Feng J J. New J. Chem., 2014, 38(2): 784-789
23Huang H, Lv J J, Zhou D L,Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3(44): 21691-21696
24De B, Karak N. RSC Adv., 2013, 3(22): 8286-8290
25Liu S, Tian J Q, Wang L, Luo Y L, Zhai J F, Sun X P. J. Mater. Chem., 2011, 21(32): 11726-11729
26Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1): 15-18
27Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Anal. Chem., 2012, 84(12): 5351-5357
28Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873
29Yang X, Zhu Y, Liu P, He L, Li Q, Wang Q, Wang K, Huang J, Liu J. Anal. Methods, 2012, 4(4): 895-897
30Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416
31Zhou T, Huang Y, Cai Z, Luo F, Yang C J, Chen X. Nanoscale, 2012, 4(17): 5312-5315
32Liang A N, Wang L, Chen H Q, Qian B B, Ling B, Fu J. Talanta, 2010, 81(1): 438-443
33Duan J, Song L, Zhan J. Nano Res., 2009, 2(1): 61-68
34Paramanik B, Bhattacharyya S, Patra A. Chem. Eur. J., 2013, 19(19): 5980-5987
AbstractFluorescent carbon quantum dots (CQDs) were synthesized by onestep hydrothermal treatment of apple juice. Experiments showed that Hg2+ could quench the fluorescence of the CQDs with specificity. Based on this phenomenon, a selective and sensitive sensor was constructed for Hg2+ detection. In a NaH2PO4Na2HPO4 buffer solution (pH 7.0), their fluorescence intensity showed good linear relationship with the concentrations of Hg2+ from 5 to 100 nmol/L and 1 to 50 μmol/L, respectively, with the detection limit of 2.3 nmol/L (S/N=3). Its practical application was further demonstrated by the detection of Hg2+ in real water samples.
KeywordsCarbon quantum dots; Green synthesis; Apple juice; Mercury detection