肖志明 宋榮 賈錚 李陽 樊霞
摘要以不同廠家阿莫西林膠囊及其內容物近紅外(Near infrared, NIR)光譜為例,尋找評價分段直接標準化算法(Piecewise direct standardization, PDS)進行光譜校正是否成功的量化指標。本研究共涉及76批阿莫西林膠囊樣品,其中54批用于建立膠囊劑的定量模型。通過聚類分析,所有膠囊的NIR光譜分成5類,每類視為一個均質樣本;分別計算每個均質樣本的平均光譜,從該樣本中選擇10~15張光譜作為PDS校正的目標光譜,對76批阿莫西林膠囊內容物粉末光譜進行校正,利用阿莫西林膠囊定量模型對校正后的光譜進行含量預測;計算校正后的光譜與PDS校正中目標光譜所屬均質樣本的平均光譜的相似系數,分析其與預測誤差的關系。結果表明,校正結果與所選擇的目標光譜關系密切。PDS校正光譜與模型中不同均質樣本平均光譜的相似系數(r)越大,通常校正效果越好;當r<99%時,一般可判斷PDS校正失敗(預測誤差>5%)。因此, 可以用PDS校正后光譜與校正時使用的目標光譜所屬的均質樣本的平均光譜的相似系數作為判斷PDS校正是否成功的標志。
關鍵詞PDS算法; NIR定量模型; 預測結果; 誤差分析
1引言
利用近紅外(Near infrared, NIR)技術識別假劣藥品和進行藥品生產過程控制,已經成為藥物分析的新熱點\[1~4\]。NIR技術的應用與所采用的模型關系密切。NIR模型優劣不僅與建模所選擇的譜段\[5,6\]、預處理方法\[7\]和算法\[6\]有關,更與建模訓練集樣本的代表性關系密切\[8,9\]。為表述NIR建模樣本的代表性問題,本研究組提出了均質樣本概念\[10,11\]。NIR定量模型的訓練集中包含有若干個不同的均質樣本;當模型遇到建模時未包括的新均質樣本時,預測結果就可能出現較大偏差。這時可以通過加入新樣本進行模型更新或利用化學計量學算法對新樣本光譜進行校正,擴展原模型的適用范圍\[10~13\]。為了解決NIR技術在企業生產過程控制應用之初代表性樣品收集困難、建模繁瑣問題,開展了對已建立的通用性模型經校正后作為生產過程控制初始模型的研究\[13\],已采用分段直接標準化算法(Piecewise direct standardization, PDS)和斜率/截距(Slope/Bias, S/B)算法,用頭孢拉定膠囊定量模型直接預測生產過程的中間體膠囊內容物的含量,取得了良好的預測效果。但如何合理快速地判斷這些校正方法的效果問題仍未解決。
本研究以阿莫西林膠囊定量模型為例,選擇不同的目標光譜用于PDS校正,嘗試將生產過程中間體阿莫西林膠囊內容物光譜經過PDS校正后通過阿莫西林膠囊定量模型預測含量。通過探討PDS校正中,校正光譜和模型訓練集中不同均質樣本平均光譜的相似系數(簡稱校正光譜相似系數)與預測誤差的關系,尋找用于判定PDS校正準確性的量化指標,為實際應用提供指導。
2方法原理
2.1光譜預處理方法
對光譜進行預處理可以提高定量分析中光譜數據與其對應含量值之間的相關關系。本實驗主要采用的光譜預處理方法有:
2.1.1直線差減法直線差減法是一種針對傾斜光譜的經典基線校正方法。首先對校正的波段用最小二乘擬合一條直線,然后從光譜中減去該直線,達到基線校正的目的\[14\]。
2.1.2矢量歸一化法在NIR固體樣本的定量分析中,一般假設測量時近紅外光在樣品中的有效路程一致。但樣品內部的粒度、晶型及測量重復性等因素都易引起測量光程的變化。
轉換矩陣F就可以將轉化光譜Xs轉換成與目標光譜相匹配的光譜Xs,std。
利用PDS可以進行不同儀器光譜間系統誤差的校正。本研究嘗試將阿莫西林膠囊光譜(目標光譜)與其內容物粉末光譜(轉化光譜)的差異看作是系統誤差(主要為膠囊殼的差異),采用PDS法對膠囊內容物的光譜先進行校正,再利用阿莫西林膠囊含量預測模型預測膠囊內容物的含量。
2.3均質樣本
均質樣本是指主成分含量不同,輔料以及制劑工藝相同或相近的一組樣品。該理念起源于通用性氧氟沙星注射液定量模型的研究\[11\],研究中發現模型訓練集中,處方相同僅活性成分含量不同的樣本在其主成分得分圖中可明顯集中于一組,該組樣本被稱為一個均質樣本;輔料處方不同的樣本屬于不同的均質樣本;均質樣本的NIR光譜具有高度的相似性。后來該理念被延伸至藥品固體制劑:認為NIR光譜具有高度相似性的一組樣本為一個均質樣本;均質樣本可通過聚類分析的方法進行劃分,用于建模時訓練集樣本的選擇以及判斷模型是否需要更新。均質樣本光譜相似性的閾值可利用相關系數確定\[10\]。定量模型的訓練集可以認為由一個或幾個均質樣本組成,建模時應從不同的均質樣本中選擇代表性樣品組成訓練集,當預測訓練集未包含的均質樣本樣品時,預測誤差變大,需要對模型更新或對該類樣本進行校正。
3實驗部分
3.1儀器與試劑
Bruker MatrixF傅立葉變換NIR光譜儀,配有光纖探頭測樣附件,銦鎵砷(InGaAs)檢測器,Bruker公司OPUS 5.5光譜分析軟件。島津20A高效液相色譜分析系統,配有自動進樣器,二極管陣列檢測器以及工作站。
76批阿莫西林膠囊(規格為0.25 g和0.50 g)為2010年全國評價性抽驗樣品,含量(mg/mg)范圍為84.0%~67.5%;阿莫西林對照品(批號:130409201011),由中國食品藥品檢定研究院提供。
3.2含量參考值的測定
按中國藥典2010版HPLC法測定阿莫西林含量\[18\]。色譜柱:Dikma Diamonsil C18 (250 mm×2.4 mm, 5 μm);流動相:0.05 mol/L KH2PO4溶液(用2 mol/L KOH調至pH 5.0)乙腈(97.5∶2.5, V/V);檢測波長254 nm;柱溫:30 ℃;流速:1.7 mL/min;進樣量:20 μL。
3.3樣品NIR光譜的采集
利用光纖探頭分別采集阿莫西林膠囊和膠囊內容物光譜。光譜測量范圍為4000~12000 cm
背景掃描次數為32次,樣品掃描次數為32次,測定溫度為室溫(22±2)℃,濕度為20%~50%。
從每批樣品中隨機抽取6粒膠囊,將光纖抵在單層膠囊殼的一側掃描,每粒掃描3張光譜,計算平均光譜。再將膠囊內容物分別傾倒至標準NIR測量瓶中,將光纖插入內容物中,掃描3張光譜,計算平均光譜。
3.4建立NIR模型
用Bruker OPUS軟件中的Qunant 2模塊,參照文獻\[8,9\],采用PLS算法建立阿莫西林膠囊定量模型。按照參考文獻\[7\]選擇訓練集樣本:首先對所有的樣品光譜經矢量歸一化處理后在全譜范圍內采用Wards算法進行聚類分析,從76批光譜中選擇出54張光譜作為訓練集,其它光譜作為驗證集;建模譜段為5400~7100 cm
3.5PDS校正
利用OPUS 5.5軟件中“Setup spectra transfer method”模塊,采用PDS法對阿莫西林膠囊內容物的光譜進行校正,再利用所建立的阿莫西林膠囊定量模型預測膠囊內容物的含量。參照文獻\[13\],設定PDS校正過程中使用的參數;目標光譜(阿莫西林膠囊光譜)數量一般選擇10~15張,窗口大小選擇7個波長點。
根據76批阿莫西林膠囊光譜的聚類分析結果,全部樣本大致可分成5類,每一類被認為是一個均質樣本。從5類光譜中分別選擇PDS校正的目標光譜,分別稱之為類Ⅰ、類Ⅱ、…、類Ⅴ光譜,計算同一膠囊內容物光譜經不同的目標光譜校正后得到的校正光譜與各均質樣本平均光譜的相似系數
4結果與討論
4.1阿莫西林膠囊定量模型
阿莫西林膠囊、膠囊內容物和膠囊殼的NIR光譜呈明顯差異
4.2PDS校正
由于膠囊內容物光譜與阿莫西林膠囊光譜具有較大的差異,直接利用阿莫西林膠囊模型預測膠囊內容物的含量,誤差均大于5%;經PDS校正后可以改善預測的準確性,但部分樣本的預測誤差較大(>5%)(表2)。
PDS校正系通過對膠囊光譜和對應的膠
囊內容物光譜進行關聯,將內容物光譜校正成膠囊光譜進行預測。分別用類Ⅰ、類Ⅱ、…、類Ⅴ光譜對每一個內容物光譜進行PDS校正(得到的校正光譜分別稱類Ⅰ、類Ⅱ、…、類Ⅴ校正光譜),預測含量,計算預測誤差;再計算諸校正光譜與阿莫西林膠囊各均質樣本平均光譜的相似系數,簡稱校正光譜相似系數(r);將每一個校正光譜的預測誤差與對應的r值作圖,以預測誤差5%為分界,分析預測誤差與r的關系。
分析類Ⅰ校正光譜的預測誤差和與之對應的r之間的關系,發現預測誤差隨著r的增大而減小;誤差大于5%的樣本共有14個,其中r最大為98.78%,最小為93.92%;誤差小于5%的樣本共有62個,其中r最大值為99.87%,最小值為98.84%。由主成分得分圖可見(圖2),預測誤差大于5%的光譜均分布在訓練集樣本范圍之外,說明其與訓練集光譜存在較大的差異;預測誤差小于2%的樣本,則基本都分布在訓練集范圍之內,說明其與訓練集光譜的相似性較高;證明了校正光譜的相似性直接影響預測結果。
同法分別分析類Ⅱ、…、類Ⅴ校正光譜的預測誤差和其在模型訓練集光譜主成分得分圖中的位置(圖3),結果均與類Ⅰ校正光譜相似,預測誤差隨著r的增大而減小。預測誤差和r匯總于表3。結果表明,當PDS校正光譜與建模的均質樣本光譜均存在較大差異時,模型將不能對其準確預測。
繪制r的正態分布曲線(圖4),單側檢驗,計算出其95%的置信區間為0.9863~0.9994。由于此正態分布中的r所對應的校正光譜的預測誤差均小于5%,故可以認為當r>98.63%時,模型對校正光譜的預測誤差小于5%。即r=99%可作為閾值, 用于判斷PDS校準成功與否。5結論
PDS校正可以擴展NIR模型的適用范圍,但校正的成功與否與所選擇的目標光譜關系密切。利用均質樣本概念,計算PDS校正光譜與模型中諸均質樣本光譜的相似系數(r)。通常r越大,校正效果越好;當r<99%時,一般可判斷PDS校正失敗(預測誤差>5%),據此可以選擇適宜的目標光譜進行PDS校正,也可以判斷PDS校正的成功與否。
References
1Moffat A C, Assi S, Watt R A. J. Near Infrared Spec., 2010, 18(1): 1-15
2FENG YanChun, HU ChangQin. Spectrosc. Spect. Anal., 2014, 34(5): 1222-1228
馮艷春, 胡昌勤. 光譜學與光譜分析, 2014, 34(5): 1222-1228
3Reich G. Adv. Drug Deliver. Rev., 2005, 57: 1109-1143
4Boyer C, Gaudin K, Kauss T, Gaubert A, Boudis A, Verschelden J, Franca M, Roussille J, Boucher J, Olliaro P, White N J, Millet P, Dubost J. J. Pharm. Biomed. Anal., 2012, 6768: 10-15
5Li H D, Liang Y Z, Xu Q S, Cao D S. Anal. Chim. Acta, 2009, 648: 77-84
6Liu Y Y, Hu C Q. Vib. Spectrosc., 2011, 55: 241-249
7Ni Z, Feng Y C, Hu C Q. J. Anal. Bioanal. Techniques, 2010, 1(3): 1-7
8Jia Y H, Liu X P, Feng Y C, Hu C Q. AAPS PharmSciTech., 2011, 12(2): 738-745
9Zou W B, Feng Y C, Song D Q, Hu C Q. J. Chin. Pharm. Sci., 2012, 21(5): 459-467
10Zou W B, Feng Y C, Dong J X, Song D Q, Hu C Q. Sci. China. Chem., 2013, 56(4): 533-540
11Hou S R, Feng Y C, Zhang X B, Hu C Q. J. Chin. Pharm. Sci., 2012, 21(1): 62-69
12Zhang X B, Feng Y C, Hu C Q. Anal. Chim. Acta, 2008, 630: 131-140
13LEI DeQing, HU ChangQin, FENG YanChun, FENG Fang. Acta Pharm. Sin., 2010, 45 (11): 1421-1426
雷德卿, 胡昌勤, 馮艷春, 馮 芳. 藥學學報, 2010, 45 (11): 1421-1426
14KE BoKe. Research on Application of Near Infrared Spectroscopy in Silicagel Column Chromatography Process. Hangzhou: Zhejiang University, 2007: 8
柯博克. 近紅外光譜在硅膠柱層析過程分析中的應用研究. 杭州: 浙江大學, 2007: 8
15NI Zhen,HU ChangQin, FENG Fang. Chin. J. Pharm. Anal., 2008, 28(5): 824-829
尼 珍, 胡昌勤, 馮 芳. 藥物分析雜志, 2008, 28(5): 824-829
16Candolfi A, Maesschalck De R, JouanRimbaud D, Hailey P A, Massart D L. J. Pharm. Biomed. Anal., 1999, 21: 115-132
17ZHANG XueBo, FENG YanChun, HU ChangQin. Chin. J. Pharm. Anal., 2009, 29(8): 1390-1399
張學博, 馮艷春, 胡昌勤. 藥物分析雜志, 2009, 29(8): 1390-1399
18Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing: Chinese Medical Science and Technology Press, 2010, 401-402
國家藥典委員會. 中國藥典. 北京: 中國醫藥科技出版社, 2010: 401-402
AbstractThe near infrared (NIR) spectra of 76 batches of the amoxicillin capsules from different manufacturers and their corresponding content powder without capsules cell were used to find some quantitative indicators to evaluate whether the piecewise direct standardization (PDS) algorithm succeeded in NIR quantitative model updating. 54 batches were used to construct the NIR quantitative model for capsule preparation. All the NIR spectra of amoxicillin capsules were divided into five classes by cluster analysis, and each class can be regarded as a homology sample set. The average spectrum for each homology sample set was calculated. Ten to Fifteen spectra were selected from each homology sample set as the corresponding master spectra of the PDS algorithm to correct all the NIR spectra of the amoxicillin content powder respectively. Then the corrected spectra were predicted by the constructed NIR quantitative model for amoxicillin capsules. The prediction error for each corrected powder spectrum, and the correlation coefficient between each corrected powder spectrum and the average spectrum of the corresponding homolog sample set which the PDS master spectra came from, were calculated. Finally, the relationship between the prediction error and its corresponding correlation coefficient were studied. It was found that the correction results correlated closely with the selected master spectra set in PDS algorithm. The bigger the correlation coefficient (r), the better the correction results. In general, when r is less than 99%, it can be judged that the PDS correction is failed. At this condition, the prediction error is often more than 5%. Therefore, the correlation coefficient between the corrected spectrum and its corresponding average spectrum of the homology sample set can be used as an indicator to evaluate the efficiency of the PDS correction.
KeywordsPiecewise direct standardization algorithm; Near infrared quantitative model; Prediction results; Error analysis
7Ni Z, Feng Y C, Hu C Q. J. Anal. Bioanal. Techniques, 2010, 1(3): 1-7
8Jia Y H, Liu X P, Feng Y C, Hu C Q. AAPS PharmSciTech., 2011, 12(2): 738-745
9Zou W B, Feng Y C, Song D Q, Hu C Q. J. Chin. Pharm. Sci., 2012, 21(5): 459-467
10Zou W B, Feng Y C, Dong J X, Song D Q, Hu C Q. Sci. China. Chem., 2013, 56(4): 533-540
11Hou S R, Feng Y C, Zhang X B, Hu C Q. J. Chin. Pharm. Sci., 2012, 21(1): 62-69
12Zhang X B, Feng Y C, Hu C Q. Anal. Chim. Acta, 2008, 630: 131-140
13LEI DeQing, HU ChangQin, FENG YanChun, FENG Fang. Acta Pharm. Sin., 2010, 45 (11): 1421-1426
雷德卿, 胡昌勤, 馮艷春, 馮 芳. 藥學學報, 2010, 45 (11): 1421-1426
14KE BoKe. Research on Application of Near Infrared Spectroscopy in Silicagel Column Chromatography Process. Hangzhou: Zhejiang University, 2007: 8
柯博克. 近紅外光譜在硅膠柱層析過程分析中的應用研究. 杭州: 浙江大學, 2007: 8
15NI Zhen,HU ChangQin, FENG Fang. Chin. J. Pharm. Anal., 2008, 28(5): 824-829
尼 珍, 胡昌勤, 馮 芳. 藥物分析雜志, 2008, 28(5): 824-829
16Candolfi A, Maesschalck De R, JouanRimbaud D, Hailey P A, Massart D L. J. Pharm. Biomed. Anal., 1999, 21: 115-132
17ZHANG XueBo, FENG YanChun, HU ChangQin. Chin. J. Pharm. Anal., 2009, 29(8): 1390-1399
張學博, 馮艷春, 胡昌勤. 藥物分析雜志, 2009, 29(8): 1390-1399
18Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing: Chinese Medical Science and Technology Press, 2010, 401-402
國家藥典委員會. 中國藥典. 北京: 中國醫藥科技出版社, 2010: 401-402
AbstractThe near infrared (NIR) spectra of 76 batches of the amoxicillin capsules from different manufacturers and their corresponding content powder without capsules cell were used to find some quantitative indicators to evaluate whether the piecewise direct standardization (PDS) algorithm succeeded in NIR quantitative model updating. 54 batches were used to construct the NIR quantitative model for capsule preparation. All the NIR spectra of amoxicillin capsules were divided into five classes by cluster analysis, and each class can be regarded as a homology sample set. The average spectrum for each homology sample set was calculated. Ten to Fifteen spectra were selected from each homology sample set as the corresponding master spectra of the PDS algorithm to correct all the NIR spectra of the amoxicillin content powder respectively. Then the corrected spectra were predicted by the constructed NIR quantitative model for amoxicillin capsules. The prediction error for each corrected powder spectrum, and the correlation coefficient between each corrected powder spectrum and the average spectrum of the corresponding homolog sample set which the PDS master spectra came from, were calculated. Finally, the relationship between the prediction error and its corresponding correlation coefficient were studied. It was found that the correction results correlated closely with the selected master spectra set in PDS algorithm. The bigger the correlation coefficient (r), the better the correction results. In general, when r is less than 99%, it can be judged that the PDS correction is failed. At this condition, the prediction error is often more than 5%. Therefore, the correlation coefficient between the corrected spectrum and its corresponding average spectrum of the homology sample set can be used as an indicator to evaluate the efficiency of the PDS correction.
KeywordsPiecewise direct standardization algorithm; Near infrared quantitative model; Prediction results; Error analysis
7Ni Z, Feng Y C, Hu C Q. J. Anal. Bioanal. Techniques, 2010, 1(3): 1-7
8Jia Y H, Liu X P, Feng Y C, Hu C Q. AAPS PharmSciTech., 2011, 12(2): 738-745
9Zou W B, Feng Y C, Song D Q, Hu C Q. J. Chin. Pharm. Sci., 2012, 21(5): 459-467
10Zou W B, Feng Y C, Dong J X, Song D Q, Hu C Q. Sci. China. Chem., 2013, 56(4): 533-540
11Hou S R, Feng Y C, Zhang X B, Hu C Q. J. Chin. Pharm. Sci., 2012, 21(1): 62-69
12Zhang X B, Feng Y C, Hu C Q. Anal. Chim. Acta, 2008, 630: 131-140
13LEI DeQing, HU ChangQin, FENG YanChun, FENG Fang. Acta Pharm. Sin., 2010, 45 (11): 1421-1426
雷德卿, 胡昌勤, 馮艷春, 馮 芳. 藥學學報, 2010, 45 (11): 1421-1426
14KE BoKe. Research on Application of Near Infrared Spectroscopy in Silicagel Column Chromatography Process. Hangzhou: Zhejiang University, 2007: 8
柯博克. 近紅外光譜在硅膠柱層析過程分析中的應用研究. 杭州: 浙江大學, 2007: 8
15NI Zhen,HU ChangQin, FENG Fang. Chin. J. Pharm. Anal., 2008, 28(5): 824-829
尼 珍, 胡昌勤, 馮 芳. 藥物分析雜志, 2008, 28(5): 824-829
16Candolfi A, Maesschalck De R, JouanRimbaud D, Hailey P A, Massart D L. J. Pharm. Biomed. Anal., 1999, 21: 115-132
17ZHANG XueBo, FENG YanChun, HU ChangQin. Chin. J. Pharm. Anal., 2009, 29(8): 1390-1399
張學博, 馮艷春, 胡昌勤. 藥物分析雜志, 2009, 29(8): 1390-1399
18Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing: Chinese Medical Science and Technology Press, 2010, 401-402
國家藥典委員會. 中國藥典. 北京: 中國醫藥科技出版社, 2010: 401-402
AbstractThe near infrared (NIR) spectra of 76 batches of the amoxicillin capsules from different manufacturers and their corresponding content powder without capsules cell were used to find some quantitative indicators to evaluate whether the piecewise direct standardization (PDS) algorithm succeeded in NIR quantitative model updating. 54 batches were used to construct the NIR quantitative model for capsule preparation. All the NIR spectra of amoxicillin capsules were divided into five classes by cluster analysis, and each class can be regarded as a homology sample set. The average spectrum for each homology sample set was calculated. Ten to Fifteen spectra were selected from each homology sample set as the corresponding master spectra of the PDS algorithm to correct all the NIR spectra of the amoxicillin content powder respectively. Then the corrected spectra were predicted by the constructed NIR quantitative model for amoxicillin capsules. The prediction error for each corrected powder spectrum, and the correlation coefficient between each corrected powder spectrum and the average spectrum of the corresponding homolog sample set which the PDS master spectra came from, were calculated. Finally, the relationship between the prediction error and its corresponding correlation coefficient were studied. It was found that the correction results correlated closely with the selected master spectra set in PDS algorithm. The bigger the correlation coefficient (r), the better the correction results. In general, when r is less than 99%, it can be judged that the PDS correction is failed. At this condition, the prediction error is often more than 5%. Therefore, the correlation coefficient between the corrected spectrum and its corresponding average spectrum of the homology sample set can be used as an indicator to evaluate the efficiency of the PDS correction.
KeywordsPiecewise direct standardization algorithm; Near infrared quantitative model; Prediction results; Error analysis