999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

小粒野生稻導入系子粒大小和形狀的QTL定位

2014-10-20 11:10:08劉開強等
湖北農業科學 2014年16期

劉開強等

摘要:通過AB-QTL分析法,應用Windows QTL Cartographer 2.5軟件,于2009~2010年分別在武昌和南寧對一套小粒野生稻(Oryza minuta)導入系的子粒大小、粒長、粒寬與子粒長寬比進行QTL定位。2009年檢測到18個QTLs,其中千粒重、粒長、粒寬和子粒長寬比分別檢測到6、4、5和3個QTLs,單個QTL可解釋表型貢獻率的5.18%~21.33%;2010年檢測到12個QTLs,其中千粒重、粒長、粒寬和子粒長寬比分別檢測到6、2、2和2個QTLs,單個QTL可解釋表型貢獻率的6.68%~16.55%。兩年均檢測到的QTLs共有10個,其中4個新鑒定的QTLs的表型貢獻率較大,分別為qTGW-9.2、qTGW-12、qGL-9和qGW-12,其增效基因均來自于小粒野生稻。這些攜帶有利QTL的小粒野生稻導入系是進行水稻(Oryza sativa)產量和品質改良的優良材料。

關鍵詞:小粒野生稻(Oryza minuta);導入系;子粒大小;粒形;QTL定位

中圖分類號:Q78 文獻標識碼:A 文章編號:0439-8114(2014)16-3731-05

Abstract: Quantitative trait loci of grain size and shape were mapped with substitution lines from Oryza minuta with software Windows QTL Cartographer 2.5 in Wuchang and Nanning in 2009 and 2010. In 2009,18 QTLs were identified,among which 6, 4, 5 and 3 QTLs were detected for grain size,grain length,grain width and grain length/grain width, respectively. The phenotypic contribution rate explained by individual QTLs was ranged from 5.18% to 21.33%; In 2010,12 QTLs were identified,among which 6, 2, 2 and 2 QTLs were detected for grain size,grain length, grain width and grain length/grain width, respectively. The phenotypic contribution rate explained by individual QTLs was ranged from 6.68% to 16.55%. A total of 10 QTLs were detected in both two years, among which 4 QTLs newly detected have large phenotypic contribution rate explained by individual QTLs, named as qTGW-9.2, qTGW-12, qGL-9 and qGW-12, with efficiency genes from Oryza minuta. These substitution lines carrying favorable QTLs were elite materials for improving rice yield and quality.

Key words: Oryza minuta; substitution line; grain size; grain shape; QTL mapping

水稻(Oryza sativa)是重要的糧食作物,是全球一半以上人口主要的食物和營養來源。高產、優質一直是水稻的遺傳與育種研究的關鍵所在。不斷提高水稻產量和品質,是保障我國農業可持續發展的重要條件。子粒大小是水稻產量的主要構成因子之一,不僅與水稻的產量顯著正相關,還嚴重影響稻米的品質;粒形(粒長、粒寬及子粒長寬比)直接決定稻米的外觀品質和加工品質,因此發掘水稻子粒大小和粒形的關鍵基因,獲得具有自主知識產權的高產、優質基因,對培育高產、優質水稻新品種具有重要意義。

目前,已克隆了水稻中幾個影響子粒大小和形狀的數量性狀基因座(Quantitative trait loci, QTL)。如控制水稻粒長和粒重的QTL GS3(Grain Size 3),編碼了一個預測的膜蛋白[1]。GS3通過抑制細胞分裂,調控水稻粒長和粒重[1,2]。GS3在水稻中的同源基因DEP1(Dense and Erect Panicle)影響種子的密度和穗型,同時也調控了粒長[3,4]。最近報道的控制粒長的QTL qGL3,編碼了一個預測的磷酸酶蛋白(OsPPKL1),通過抑制細胞分裂,調控粒長和粒重[5,6]。qGL3能夠使Cyclin-T1;3基因去磷酸化,從而導致子粒變小[5]。因此,qGL3可能通過對Cyclin-T1;3基因進行調控間接控制細胞分裂,從而影響粒長和粒重。目前已克隆了幾個影響水稻粒寬的QTLs。其中QTL GW2編碼了一個E3泛素連接酶,可能參與降解促進細胞分裂的蛋白,從而負調控水稻粒寬、粒重及產量[7]。另外QTL qSW5/GW5編碼了一個未知功能蛋白,能夠結合多聚泛素(polyubiquitin)[8,9],表明GW5可能參與蛋白質的降解途徑。GW2和GW5的研究結果表明泛素或蛋白質降解途徑在子粒大小和重量調控中起著關鍵作用。QTL GS5編碼了一個預測的絲氨酸羧肽酶(serine carboxypeptidase),是粒寬和粒重的正調控因子。GS5過量表達導致子粒變大,而T-DNA插入的gs5突變體導致子粒變小[10]。GS5主要是通過促進細胞分裂影響水稻粒寬和粒重。GW8編碼了SPL16轉錄因子,通過促進細胞分裂調控粒寬[11]。

目前,我國在水稻產量(粒重等)基因克隆研究方面取得了長足發展,已克隆的調控子粒大小與重量的基因大多已在水稻育種中得到廣泛應用。例如,南方秈稻品種主要利用GS3的缺失功能等位基因[1,2],而北方粳稻主要利用GS3的同源基因DEP1[3,4]。因此,為了進一步提高我國水稻產量,需要發掘新的調控水稻子粒大小與重量等高產性狀的關鍵基因,在現有品種的基礎上通過遺傳改良提高水稻產量。

四倍體小粒野生稻(Oryza minuta)擁有多種病蟲害抗性,品質優良,是優異的種質資源[12]。在前期的研究中,從國際水稻所引進了小粒野生稻種質資源,通過多年鑒定發現其稻米品質優良。因此構建了一套小粒野生稻導入系[13],期望利用其發掘對栽培稻有利的優質基因。本研究采用AB-QTL(Advanced backcross quantitative trait loci,AB-QTL)分析法對小粒野生稻導入系群體進行子粒大小和粒形的QTL分析,希望從小粒野生稻中發掘對栽培稻有利的子粒大小和粒形QTL,獲得有利的QTL連鎖標記,以期為培育高產、優質水稻新品種提供實踐依據和重要基因資源。

1 材料與方法

1.1 試驗材料

本研究供試材料是前期的研究工作中以小粒野生稻(國際水稻研究所種質資源庫材料,編號Acc.No.101133)為供體親本,IR24為受體親本,構建的一套包括216個株系的小粒野生稻導入系[13]。2009年夏季在華中農業大學水稻試驗基地(湖北武漢),2010年春季在廣西農業科學院水稻研究所(廣西南寧),分別種植216份BC4F2株系群體和IR24,每點設兩次重復,按隨機區組設計,每個小區3行,每行10株,種植密度為16.5 cm×18.9 cm,選取中間8株考察千粒重(TGW)、粒長(GL)、粒寬(GW)、子粒長寬比(GL/GW)4個性狀。分析數據取8個單株的平均值。

1.2 性狀的相關分析

各性狀間的相關分析在Excel軟件中完成,數據為每點兩次重復的平均值。

1.3 SSR分析

提取216份導入系的DNA,獲得其基因型。DNA的提取、PCR反應、電泳和銀染檢測的方法均參照文獻[13]。

1.4 QTL分析

前期已構建了164個標記,覆蓋水稻基因組1 671.7 cM的遺傳連鎖圖[13]。QTL分析均采用Windows QTL Cartographer 2.5 軟件[14],先應用復合區間作圖法(composite interval mapping, CIM)分析,挑選LOD>3.0的QTL,然后應用多區間作圖法(Multiple interval mapping, MIM) 對這些QTL進行驗證。隨后優化各個QTL 的位置,再檢測其顯著性,并確定其存在。QTL的命名方法按照Mccouch等[15]的命名原則進行。

2 結果與分析

2.1 導入系及親本性狀的表現

對導入系群體(BC4F2)的4個農藝性狀進行考察分析,所獲數據基本呈連續分布狀態且有廣泛分布頻率,為多基因控制的數量性狀。由表l可見,導入系千粒重、粒長和子粒長寬比的平均值雖介于兩親本值中間,但偏向高值親本IR24;粒寬的平均值高于高值親本IR24。

2.2 導入系各性狀間的相關性分析

由表2可見,千粒重與粒長、粒寬呈極顯著正相關,但與子粒長寬比呈顯著負相關。粒長與子粒長寬比呈極顯著正相關,而與粒寬呈顯著負相關;粒寬與子粒長寬比呈極顯著負相關。

2.3 導入系各性狀的QTL定位分析

由排列測驗1 000次(permutation=1 000,P=0.05)確定各性狀的LOD閾值,結果表明在武漢和南寧其平均值均接近3.0。在相應的閾值下對各性狀進行了分析,共檢測到20個QTLs,這些QTLs的表型貢獻率介于5.18%~21.33%(表3)。由于所有性狀受環境的影響較大,對兩地的各性狀數據分別進行了定位分析如表3所示,由表3可知在武漢共檢測到18個QTLs,其中有8個來自于小粒野生稻,占44.4%;在南寧共檢測到12個QTLs,其中來自于小粒野生稻的有利QTLs為7個,占58.3%。

千粒重(TGW):8個控制千粒重的QTLs分別位于第1、3、7、9、12染色體,其中,第1、7、9染色體上有2個,第3和12染色體上各有1個。在武漢和南寧分別能解釋總共62.97%和67.37%的表型變異。位于第12染色體上的qTGW-12效應最大,在武漢和南寧分別能解釋15.41%和16.55%的表型變異,其增效基因來自于小粒野生稻。

粒長(GL):4個控制粒長的QTLs分別位于第3、5、9染色體,其中,第3染色體上有2個,第5和9染色體上各有1個。在武漢和南寧分別能解釋44.07%和21.11%的表型變異。位于第9染色體上的qGL-9效應最大,能解釋18.28%的變異,其增效基因來自于小粒野生稻。

粒寬(GW):5個控制粒寬的QTLs分別位于第1、4、7、12染色體,其中,第1染色體上有2個,第4、7和12染色體上各有1個。在武漢和南寧分別能解釋48.33%和22.66%的表型變異。位于第12染色體上的qGW-12效應最大,能解釋25.33%的表型變異,其增效基因來自于小粒野生稻。

子粒長寬比(GL/GW):3個控制子粒長寬比的QTLs分別位于第4、7、12染色體,在武漢和南寧分別能解釋25.44%和19.00%的表型變異。位于第7染色體上的qGL/GW-7效應最大,能解釋11.26%的表型變異,其增效基因來自于IR24。

3 討論

同栽培稻相比,野生稻基因組中與產量有關的不利基因出現的頻率遠遠高于栽培稻。Xiao等[16]利用AB-QTL策略來檢測普通野生稻中有利于改良栽培稻性狀的QTL。對12個性狀進行QTL定位。一共定位了68個QTLs,其中35個(占51.0%)有利等位基因來自表型較差的普通野生稻親本。隨后不同研究者利用相同方法檢測到來自于普通野生稻的有利QTLs占33.0%~74.0%[17-19]。Yoon等[20]應用至少含有51個重穎野生稻片段的中間材料與一份韓國粳稻品種雜交獲得的F2∶3家系,對13個農藝性狀進行了QTLs分析,共檢測到39個的QTLs,正效的QTLs有18(46.2%)個來自于重穎野生稻。Rahman等[21]應用至少含有14個小粒野生稻片段的中間材料與一份韓國粳稻品種雜交獲得的F2∶3家系,對16個農藝性狀進行QTLs分析,共檢測到36個QTLs,其中有22個與產量及產量相關性狀的QTLs為首次報道。其中來自于小粒野生稻正效QTLs占57.0%。

通過以上分析可見,總體而言野生稻中不利基因出現頻率高,但在性狀之間存在差異,因而在利用野生稻資源時應視具體性狀而論。另外,不同染色體出現有利基因的頻率也存在差異。本研究共檢測到20個QTLs,其中來自于小粒野生稻的有利QTLs有9個,占45.0%,分布在1、7、9和12條染色體上,有利基因出現在第9和12染色體上頻率最高。

本研究檢測到的QTLs與其他群體定位的QTLs結果進行比較,發現許多QTLs是重疊或相同的(表3),其中部分為首次報道。在被檢測到的20個QTLs中,有10個為首次報道。共定位到8個控制千粒重的QTLs,其中4個早前已有報道,分別為qTGW-1.1、qTGW-1.2[22]、qTGW-3[17]、qTGW-9.1[18]。4個新的QTLs分別為qTGW-7.1、qTGW-7.2、qTGW-9.2和qTGW-12,其中qTGW-7.2僅在武漢被檢測到,qTGW-7.1僅在南寧被檢測到,其增效基因分別來自小粒野生稻和IR24。而qTGW-9.2和qTGW-12在兩地均被檢測到,且表型貢獻率較大,其增效基因都來自小粒野生稻。3個粒型性狀共檢測到12個QTLs,其中6個為已有報道,分別為qGW-1.1、qGW-1.2[22]、qGL-3.1、qGW-7[23]、qGL-3.2[17]、qGL-5[24]。而qGL-9、qGW-4、qGW-12、qGL/GW-4、qGL/GW-7、qGL/GW-12均為首次報道。其中表型貢獻率較大的有2個分別為qGL-9和qGW-12,在武昌和南寧均被檢測到,表型貢獻率的平均值分別為14.26%和17.32%,增效基因均來自小粒野生稻。

另外,本研究中的4個性狀均檢測到來自小粒野生稻的正效QTLs,對水稻的產量和品質具有改良潛力。這些來自小粒野生稻的正效QTLs存在的形式多種多樣,有的單獨存在,有的處于多效QTLs區間呈簇狀分布。因此針對不同QTLs的特點,在進一步利用時必須采取不同的方法區別對待。對一些控制單一性狀的QTLs位點,可以直接利用。如第5染色體上RM548~RM509標記區間檢測到控制粒長的QTLs。而對于多效性的QTLs,由于控制多個性狀,所以在利用時應多個性狀相互兼顧。如第9染色體上RM215~RM205標記區間檢測到控制千粒重和粒長的QTLs,在增加粒重的同時增加粒長,很可能將高產與優質相結合。而對第12染色體上RM19~RM512標記區間檢測到一個控制千粒重和粒寬的QTLs,在增加產量的同時,粒寬也增加,很可能對稻米品質產生負效應,在利用時應綜合考慮。

參考文獻:

[1] FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet,2006,112:1164-1171.

[2] MAO H, SUN S, YAO J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. PNAS,2010,107:19579-19584.

[3] HUANG X, QIAN Q, LIU Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat Genet, 2009,41:494-497.

[4] ZHOU Y, ZHU J, LI Z, et al. Deletion in a Quantitative Trait Gene qPE9-1 Associated With Panicle Erectness Improves Plant Architecture During Rice Domestication[J]. Genetics,2009,183:315-324.

[5] QI P, LIN Y, SONG X, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1; 3[J]. Cell Res,2012,22:1666-1680.

[6] ZHANG X, WANG J, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. PNAS,2012,109:21534-21539.

[7] SONG X, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet,2007,39:623-630.

[8] SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nat Genet, 2008,40:1023-1028.

[9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

[10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

[11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

[12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

[13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

[14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

[15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

[16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

[17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

[18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

[19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

[20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

[21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

[22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

[23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

[24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

(責任編輯 韓 雪)

[9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

[10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

[11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

[12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

[13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

[14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

[15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

[16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

[17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

[18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

[19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

[20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

[21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

[22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

[23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

[24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

(責任編輯 韓 雪)

[9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

[10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

[11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

[12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

[13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

[14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

[15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

[16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

[17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

[18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

[19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

[20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

[21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

[22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

[23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

[24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

(責任編輯 韓 雪)

主站蜘蛛池模板: 精品91在线| 第一页亚洲| 亚洲永久视频| 日本三级精品| 国产欧美专区在线观看| 91精品视频播放| 久久免费视频6| 亚洲国产欧美目韩成人综合| 国产欧美日韩在线在线不卡视频| 欧美在线三级| 久久青草热| 国产毛片不卡| 国产男人的天堂| 国产福利拍拍拍| 国内精品久久九九国产精品| 尤物精品国产福利网站| 亚洲h视频在线| 99这里只有精品在线| 亚洲美女一级毛片| AⅤ色综合久久天堂AV色综合| 欧美高清三区| 欧美中文字幕在线视频| 福利一区三区| 亚洲女人在线| 婷婷99视频精品全部在线观看| 天天色天天综合| 亚洲视频黄| 亚洲天堂首页| av手机版在线播放| 美女一级毛片无遮挡内谢| 亚洲一级毛片免费观看| 国产人人乐人人爱| 国产精品护士| 天天色综网| 蜜臀av性久久久久蜜臀aⅴ麻豆| 2020国产免费久久精品99| 黄色网址免费在线| 亚洲男人在线| 国产视频 第一页| 免费国产无遮挡又黄又爽| 狠狠色狠狠综合久久| 久久黄色小视频| 欧美激情第一欧美在线| 国产成人综合在线视频| 色天堂无毒不卡| 欧美日韩v| 色婷婷电影网| 国产日韩欧美中文| 欧美特级AAAAAA视频免费观看| 色噜噜在线观看| 亚洲国产欧美目韩成人综合| 精品人妻一区无码视频| 国产成人精品男人的天堂| 国产精品福利导航| 婷婷六月综合网| 欧美色99| 国产成人综合亚洲欧美在| 亚洲嫩模喷白浆| 福利在线一区| 在线高清亚洲精品二区| www.亚洲一区| Aⅴ无码专区在线观看| 在线国产欧美| 麻豆精品在线| 99在线观看国产| 在线免费亚洲无码视频| 91久久精品国产| 日韩欧美在线观看| 国产成人精品免费视频大全五级 | 免费无码网站| 亚洲一区色| 最新国产精品第1页| 91麻豆国产精品91久久久| 成年人福利视频| 亚洲开心婷婷中文字幕| 久久人人爽人人爽人人片aV东京热| 国产精品亚洲va在线观看| 中文字幕一区二区视频| 又粗又硬又大又爽免费视频播放| 一级毛片基地| 亚洲精品大秀视频| 国产精品网址你懂的|