999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Arc Connectivity of Balanced Half-transitive Digraphs?

2014-11-02 09:41:24ZHANGSongTIANYingzhiMENGJixiang

ZHANG Song,TIAN Ying-zhi,MENG Ji-xiang

(College of Mathematics and System Sciences,Xinjiang University,Urumqi,Xinjiang 830046,China)

Abstract: The digraph D=(V,E)is said to be maximally arc-connected,if λ(D)= δ(D).Moreover,the digraph D is said to be super arc-connected,if every minimum arc cut of D is the set of the in-arcs or the out-arcs of some vertex of D.A bipartite digraph D with bipartition X1and X2is half-transitive if Aut(D)acts transitively on X1and X2,respectively.In this paper,we prove that each strongly connected half-transitive digraph is maximally arc-connected.Moreover,we prove that for all but a few exceptions,the connected half-transitive balanced digraph is super arc-connected.

Key words:Imprimitive bolck;Half-transitive digraphs;Maximally arc-connected;Super arc-connected

0 Introduction

For terminologies not given here,we refer to[1]and[2].

LetD=(V,E)be a digraph,whereV=V(D)is the vertex set ofDandEis the arc set ofD.The elements ofVare called vertices ofDand the elements ofEare called arcs ofD.Arc(u,v)ofDis an ordered pairs,which mean the arc be from vertexuto vertexvand is said to be an in-arc ofvand an out-arc ofu.Ifuis a vertex ofV,(u,V)is arc subset consisting of all arcs fromuto the vertex ofV,(V,u)is arc subset consisting of all arcs from the vertex ofVtou.We use|(U,U0)|to denote the number of arcs which is from vertex ofUto vertex ofU0.Naturally,(u)=|(u,V)|and(u)=|(V,u)|is said to beout-degreeandin-degreeofu,respectively.

The minimum out-degree ofDis δ+(D)=min{(u),u∈V}and the minimum in-degree ofDis δ?(D)=min(u),u∈V}.We denote by δ(D)be the minimum of δ+(D)and δ?(D).

An isomorphism from the digraphD=(V,E)to the digraphY=(V0,E0)is a bijection ? fromVtoV0such that(u,v)∈EDif and only if(?(u),?(u))∈EY.An isomorphism fromDto itself is called an automorphism ofD.

The symmetric group ofTis the set of all permutations of a given setT,which is said to be the set of all bijections fromTto itself.Let Φ be a subgroup of the symmetric group over a setU.Φ acts transitively on a subsetTofUif there exists a permutation ? ∈ Φ such that ?(x)=yfor anyx,y∈T.We say Φ is a transitive group of permutations onUif Φ acts transitively onU.We say a digraphDto be vertex-transitive if its automorphism groupAut(D)acts transitively on the vertex set ofD.A digraphDis said to be bipartite digraph if its vertex set can be partitioned into two subsetsX1andX2such that any two vertices of one part has no arc.

De finition 1LetDbe a bipartite digraph with bipartitionX1∪X2.Dis half-transitive ifAut(D)acts transitively onX1andX2,respectively.

1 Arc connectivity

LetD=(V,E)be a digraph.An arc-disconnectingsetofDis a subsetWofEso thatDW=(V,EW)is not strongly connected.A disconnecting setWofDis said minimum if there is no arc-disconnecting set has smaller cardinality thanW.The arc-connectivity ofDis the cardinality of a minimum arc-disconnecting set ofD,denoted by λ(D).The positive arc-neighborhood of a subsetAofVis the subset(A,VA).The negative arc-neighborhood of a subsetAofVis the set(VA,A),denote(A)=|(A,VA)|and(A)=|(VA,A)|.The arc-neighborhood of a proper nonempty subsetAofVis said to be an arc-cut ofD.Clearly,a positive or negative arc-neighborhood of a proper nonempty subset ofVis also a arc-disconnecting set.Thus for any proper nonempty subset ofAofV,we have(A)≥λ(D)and(A)≥λ(D).IfAonly includes one vertex ofD,we easily see δ(D)≥λ(D).

The concept of fragments and atoms were first proposed by Watkins[3].LetD=(V,E)be a digraph.A positive(negative)arc-fragment ofDis a proper nonempty subset ofVwhose positive(negative)arc-neighborhood has cardinality λ(D).A positive(negative)λ-atom ofDis the one of the minimum cardinality positive(negative)arc-fragment ofD.

We sayDto be super arc-connected,simply super-λ,if any positive and negative λ-atom ofDis a single vertex.A λ-super-atom ofDis a λ-atom ofDwhich is not a single vertex.

Super-connectivity is an important concept in the network architecture design.For this purpose,Boesch[4]proposed the concept of super-connectivity,which is a special kind of conditional connectivity[5].In[6],Hamidoune and Tindell gave a nice characterization of super-edge-connected(super-arc-connected)vertex-transitive graphs(digraphs).

Lemma 1LetD=(V,E)be a strongly connected digraph.LetAandBbe positive(negative)arc fragments ofDsuch thatAis not a subset ofBandBalso is not a subset ofA.IfA∩B,?andA∪B,V,thenA∩BandA∪Bare positive(negative)arc fragments ofD.

proofWe may partition the arc neighborhoods of the sets under consideration as follows:

|(A∩B,V(A∩B))|=|(A∩B,V(A∪B))|+|(A∩B,AB)|+|(A∩B,BA)|,

|(A∪B,V(A∪B))|=|(A∩B,V(A∪B))|+|(AB,V(A∪B))|+|(BA,V(A∪B))|,

|(A,VA)|=|(A∩B,V(A∪B))|+|(AB,V(A∪B))|+|(A∩B,BA)|+|(AB,BA)|,

|(B,VB)|=|(A∩B,V(A∪B))|+|(BA,V(A∪B))|+|(A∩B,AB)|+|(BA,AB)|.

It is obvious that

|(A∩B,V(A∩B))|+|(A∪B,V(A∪B))|≤|(A,VA)|+|(B,VB)|≤2λ(D).

Since|(A∩B,V(A∩B))|≥ λ(D)and|(A∪B,V(A∪B))|≥ λ(D),we have|(A∩B,V(A∩B))|= λ(D)and|(A∪B,V(A∪B))|=λ(D).ThusA∩BandA∪Bare positive arc fragments ofD.Similarly,ifAandBare negative arc fragments,thenA∪BandA∩Bare negative fragments ofD.

Lemma 2letD=(V,E)be a strongly connected digraph,then distinct positive(negative)λ-atoms are disjoint.

proofLetAandBbe distinct positive(negative)λ-atoms ofD.IfA∩B,?,by Lemma 1,A∩Bis a positive(negative)fragment.Obviously,|A∩B|<|A|,which contradicts thatAis a minimum cardinality fragment.

An imprimitive block for a group Φ of permutations of a setTis a proper,nontrivial subsetAofTsuch that if ?∈φ then either ?(A)=Aor ?(A)∩A=?.

Clearly,a nontrivial λ-atom ofDis an imprimitive block for the automorphism groupAut(D).

Lemma 3LetDbe a strongly connected half-transitive digraph with bipartitionX1∪X2andA=A1∪A2be a positive λ-atom.IfAis not a single vertex set,thenY=D[A]is a half-transitive digraph.

proofFor anyv,u∈A1,there exists φ ∈Aut(D)such that φ(v)=u.Thusu∈ φ(A)∩Aand φ(A)=A(by Lemma 2).Therefore,the restriction of φ toAis an automorphism ofY.It meansAut(Y)acts transitively onA1.Similarly,Aut(Y)acts transitively onA2.

Theorem 1LetDbe a strongly connected half-transitive digraph with bipartitionX1∪X2,then λ(D)= δ(D).

proofAssume λ(D)< δ(D).LetA=A1∪A2be a positive λ-atom ofDandY=D[A].SinceDis half-transitive,we may assume(v1)=d1and(v2)=d2for anyv1∈X1andv2∈X2.Assume,without loss of generality,thatd1=δ(D).By Lemma 3,we knowY=D[A]is also half-transitive.Thus we can assume that(v1)=p1and(v2)=p2for anyv1∈A1andv2∈A2.Obviously,|A1|≥p2and|A2|≥p1.

Since each λ-atom is weakly connected,ifA1orA2is empty,thenAis a single vertex and λ(D)= δ(D).In thefollowing,we assume bothA1andA2are nonempty.

Ifd1?p1≥1,then λ(D)=(A)=(d1?p1)|A1|+(d2?p2)|A2|≥|A1|+d2?p2≥d2≥δ(D),a contradiction.

Ifd2?p2≥1,then λ(D)=λ(D)=(A)=(d1?p1)|A1|+(d2?p2)|A2|≥d1?p1+|A2|≥d1≥δ(X),a contradiction.

Ifd1?p1=d2?p2=0,then λ(D)=(A)=(d1?p1)|A1|+(d2?p2)|A2|=0,a contradiction.

2 Super arc-connected half-transitive digraphs

A digraphDis said to be balanced if for any vertexuofD,(u)=(u).

Lemma 4[6]LetD=(V,E)be a strongly connected balanced digraph andA,Bbe arc-fragments ofDsuch thatA*BandBA.IfA∪BVandA∩B,then each of the setsA∪B,A∩B,ABandBAare arc-fragments ofD.

Theorem 2[7]LetD=(V,E)be a strongly connected balanced digraph which is not a symmetric cycle,is not super-arc-connected and has δ(D)≥ 2.If δ(D)>2 orDis vertex-transitive,then the distinct λ-super-atoms ofDare disjoint,thus λ-super-atoms are imprimitive blocks.

Lemma 5LetD=(V,E)be a strongly connected balanced digraph.Then(A)=(A)for anyA?V.

proofSince(A)=Pu∈A(u)?|E(D[A])|,(A)=P

u∈A(u)?|E(D[A])|andDis a balanced digraph,we have(A)=(A).

Theorem 3LetDbe a strongly connected balanced half-transitive digraph with bipartitionX1∪X2.AssumeDis neither a symmetric cycle nor a directed cycle,andDis not super-arc-connected,then distinct λ-super-atoms ofDare disjoint and λ-super-atoms are imprimitive blocks.

proofBy Theorem 2,we only need to consider δ(D)≤ 2.

SupposeAandBare distinct positive λ-super-atoms ofDsuch thatA∩B,?.Clearly,we haveA∪B,V.By the lemma 4,A∩B,ABandBAare arc-fragments ofD.SinceAandBare minimum nontrivial arc-fragments,we have|A∩B|=1,|AB|=1 and|BA|=1.Thus|A|=|B|=2.Without loss of generality,assumeA={u,v}andB={v,w},whereu,w.BecauseD[A]andD[B]are bipartite digraphs,we may assumeu,w∈X1andv∈X2.

By Theorem 1,we know λ(D)= δ(D).SinceA∩B,ABandBAare arc-fragments ofD,we obtain(u)=(AB)= λ(D)= δ(D),)=(BA)= λ(D)= δ(D)and(v)=(B∩A)= λ(D)= δ(D).BecauseDis both balanced and half transitive,we can see thatDis a regular digraph.If δ(D)=1,thenDis isomorphic to a directed cycle,a contradiction.

Now we assume δ(D)=2.Since|(u,VA∪B)|≥δ(D)?1=1,|(w,VA∪B)|≥δ(D)?1=1 and(v)=(B∩A)=λ(D)=δ(D)=2,we can verify that(u,v),(v,u),(w,v)and(v,w)∈E(D).By the half-transitivity of digraphD,we obtain thatDis isomorphic to a symmetric cycle,a contradiction.

Theorem 4LetDbe a strongly connected balanced half-transitive digraph with bipartitionX1∪X2.AssumeDis neither a symmetric cycle nor a super arc-connected digraph.LetA=A1∪A2be a λ-super-atom,A1=A∩X1andA2=A∩X2,then

(i)V(D)is a disjoint union of distinct λ-super-atom ofD.

(ii)LetY=D[A],thenAut(Y)acts transitively on bothA1andA2.

proof(i)It is sufficient to prove that any vertex ofDis in a λ-super-atom ofD.

Letv1∈A1.SinceDis half-transitive,then there exists ? ∈Aut(D)such that ?(v1)=v2,for anyv2∈X1.Thusv2∈ ?(A1)which is also a λ-super-atom.Similarly,any vertex ofX2is in a λ-super-atom.

(ii)For anyv1∈A1,there exists ? ∈Aut(D)such that ?(v1)=By Theorem 3 andA∩?(A)=we haveA=?(A).Thus,the restriction of ? toAis a automorphism ofY=D[A],which mapsv1toThus(ii)follows.

LetDbe a strongly connected balanced half-transitive digraph with bipartitionX1∪X2.In the following,we always assume that(u)=(u)=k1and(w)=(w)=k2foru∈X1andw∈X2.IfDis not super-λ,thenDhas λ-super-atoms.LetA=A1∪A2be a λ-super-atom,A1=A∩X1andA2=A∩X2.Clearly,A1,? andA2,?.By Theorem 4,D[A]is a half transitive digraph whit bipartitionA1∪A2.Letbe the out-degree of vertex ofAiinD[A]andbe the in-degree of vertex ofAiinD[A].

Lemma 6LetDbe a strongly connected balanced half-transitive digraph with bipartitionX1∪X2and D is not super-λ,then|X1||A2|=|X2||A1|andk1|A1|=k2|A2|.

proofBy Theorem 4,assumeV(D)is a disjoint union ofmλ-super-atoms.Clearly,these λ-super-atoms areisomorphic.LetAis a λ-super-atom,thenm|A1|=|X1|andm|A2|=|X2|.We get|X1||A2|=m|A1||A2|=|X2||A1|.Sincek1|X1|=k1m|A1|=k2|X2|=k2m|A2|,we havek1|A1|=k2|A2|.

Lemma 7Under above assumptions and notations,then

(i)k1?≤1 and the equality holds if and only if=|A1|and(A)=k2≤k1.

(ii)k2?≤1 and the equality holds if and only if=|A2|and(A)=k1≤k2.

proofSinceAis a λ-super-atom,then

Lemma 8Under above assumptions and notations,then

(i)Ifk2?

proofor|A1|=1.If|A1|=1,thenk1?=1,thusk1=k1|A1|=k2|A2|=k2=k2(k1?1).Sincek1≤k2,we havek1=k2=1,thusDis a directed cycle,a contradiction.

Therefore,k2|k1.Sincek1≤k2,we havek1=k2.On the other hand,the equalitythenk1=1,thusDis a directed cycle.Therefore,k2>1 and hence|A1|=k1.Thus(i)holds.

By a similar argument as(i),we can prove(ii).

Theorem 5LetDbe a strongly connected balanced half-transitive digraph with bipartitionX1∪X2,(u)=is not isomorphic to a symmetric cycle,thenDis not super-arc connected if and only if

(i)k1=k2=k≥2 and there is an induced half-transitive subgraphD1=D[A]with bipartitionA1∪A2such that

(ii)k1=k2=k≥2 and there is an induced half-transitive subgraphD1=D[A]with bipartitionA1∪A2such that

proofFirst we prove the sufficiency.If the conditions in(i)are satis fi ed,then we only need to prove that(A)is not an in-arc set of some vertex ofV(D).Assume(A)is the in-arc set ofx∈X1.Clearly,(x)=A2.Since=kforw∈A2,we have(x)∩(x)=?.ByDis half-transitive,we have(v)∩(v)=? for anyv∈X1.Since(u)=kand(u)=k?1 for anyu∈A1,there exists a vertexy∈A1such that(y)∩),?,it is a contradiction.Therefore,Dis not super-λ.Similarly,when conditions in(ii)are satis fi ed,we also can verify thatDis not super-λ.

Next,we prove the necessity.IfDis not super-λ,thenDhas λ-super-atoms.LetAbe a λ-super-atom ofDwithA1=A∩X1andA2=A∩X2.ThenD[A]is a half transitive digraph with bipartitionA1∪A2.Letbe the out-degree of vertex ofAiinD[A]andbe the in-degree of vertex ofAiinD[A].By lemma 7,we havek2?1≤≤k2.Ifk2?1=then(i)holds by Lemma 8.If=k2,thenk1?=1.Therefore,by Lemma 8,(ii)holds.

主站蜘蛛池模板: 岛国精品一区免费视频在线观看| 色视频国产| 精品国产91爱| 欧美.成人.综合在线| 欧美色视频日本| 视频二区亚洲精品| 日韩欧美国产三级| 国产91小视频在线观看| 国产美女自慰在线观看| 国产99精品久久| 亚洲九九视频| 久操线在视频在线观看| 免费国产高清精品一区在线| 成人福利在线免费观看| 亚洲成综合人影院在院播放| 老司机精品一区在线视频| 亚洲水蜜桃久久综合网站| 91亚瑟视频| 久久77777| 国产精品私拍99pans大尺度 | 亚洲一区二区视频在线观看| 中文字幕不卡免费高清视频| 久久久精品无码一二三区| 天天摸夜夜操| 国产精品嫩草影院av| 中文字幕人妻无码系列第三区| 国产精品极品美女自在线看免费一区二区| 99精品伊人久久久大香线蕉| 久久性视频| 国产精品亚洲五月天高清| 伊人久久大香线蕉综合影视| 在线看免费无码av天堂的| 91美女在线| 真实国产乱子伦视频| 久久女人网| 一级成人a毛片免费播放| 欧美一区精品| 色网在线视频| 国产精品30p| 久久人体视频| 国产成人精品午夜视频'| 亚洲成人精品在线| 不卡的在线视频免费观看| 国产福利一区在线| 国产爽妇精品| 免费 国产 无码久久久| 四虎成人精品在永久免费| 久久综合亚洲色一区二区三区| 日韩福利在线观看| 高清无码不卡视频| 成人无码区免费视频网站蜜臀| 国产中文一区a级毛片视频| …亚洲 欧洲 另类 春色| av在线手机播放| 黑人巨大精品欧美一区二区区| 88av在线| 99久久99这里只有免费的精品| 91无码人妻精品一区二区蜜桃| 精品欧美视频| 午夜国产精品视频| 欧美丝袜高跟鞋一区二区| 97国产在线播放| 国产剧情国内精品原创| 亚洲综合第一区| 日韩123欧美字幕| 国产主播在线观看| 国产视频自拍一区| 夜夜拍夜夜爽| 国产18在线播放| 91亚洲视频下载| 国产粉嫩粉嫩的18在线播放91| 久爱午夜精品免费视频| 亚洲午夜福利精品无码不卡| 国产黄色片在线看| 免费AV在线播放观看18禁强制| 成人一级黄色毛片| 亚洲人成网站在线播放2019| 91精品国产丝袜| 婷婷在线网站| 亚洲美女一区二区三区| 无码中字出轨中文人妻中文中| 久久久91人妻无码精品蜜桃HD|