999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Individual Ergodic Theorems for Noncommutative Orlicz Space?

2014-11-02 07:52:38SajidaTurgunTurdebekBekjan

Sajida Turgun,Turdebek N Bekjan

(College of Mathematics and System Sciences,Xinjiang University,Urumqi,Xinjiang 830046,China)

Abstract: Let(M,τ)be a semifinite von Neumann algebra and Φ be an N-function.We proved individual ergodic theorem in the noncommutative Orlicz space LΦ(M).

Key words:Noncommutative orlicz space,Individual ergodic theorem,Uniformly equicontinuous in measure

0 Introduction

Using the operator space theory and theory of interpolation of Banach spaces,Junge and Xu[1]proved a noncommutative analogue of the classical Dunford-Schwartz maximal ergodic inequality for positive contraction onLp,and the analogue of Stein’s maximal inequality for symmetric positive contractions onLp,1

The purpose of this article is to present the individual ergodic theorems in the noncommutative Orlicz spaceLΦ(M)associated with semifinite von Neumann algebra(M,τ)and N-function Φ.

The article is organized as follows.Section 1 contains some preliminaries and notations on the noncommutative Orlicz-spaces and noncommutativeLp-spaces,in section two we give some theorems,definitions about uniform equicontinuity of sequences of operators.Finally,using the technics in[3]we prove the individual ergodic theorems in Non-commutative Orlicz spacesLΦ(M).

1 Preliminaries

In this section,we collect some basic facts and notion that will be used for what follows.Throughout this paper,we denote by M a semifinite von Neumann algebra acting on a Hilbert space H,with a normal semifinite faithful trace τ.LetP(M)be the complete lattice of all projections in M.A densely defined closed operatorxin H is said to be affiliated with M ifyx?xyfor everyy∈ M,where Mis the commutant of the algebra M.An operatorx,affiliated with M,is said to be τ-measurable if for each ε >0 there existse∈P(M)with τ(e⊥)≤ ε such thate(H)?D(x),wheree⊥=I?e,Iis the unit of M,D(x)is the domain of definition ofx,letL0(M)be the set of all τ-measurable operatorsaffiliated with M,let||·||stand for the uniform norm in M.The measure topology inL0(M)is given by the system

of neighborhoods of zero.For a positive self-adjoint operatorλdeλaffiliated with M one can define

If 1≤p<∞,then the noncommutativeLp-space associated with(M,τ)is defined as

Let S+(M)={x∈M+:τ(s(x))<∞}and S(M)is linear combination of S+(M).We will often denote S+(M)and S(M)simple by S+and S,respectively.

Letxbe a τ-measurable operator andt>0.The “tth singular number(or generalizedsnumber)ofx” μt(x)is defined by

See[4]for more information about generalizedsnumber.

We remark that ifx∈L0(M),then

(i)Φ is even and convex,

(ii)Φ(x)=0 iffx=0,

An N-function Φ is said to obey the2-condition for allt,written often as Φ ∈2,if there isk>2 such that Φ(2t)≤kΦ(t)for all t≥0.Indices of an N-function Φ are provided by the following two constants,

where ?(t)is the left derivative of Φ(t)(See[5]for more information about N-function).

Definition 1Let M be a semifinite von Neumann algebra,Φ is N-function,the noncommutative Orlicz spaceLΦ(M)is defined by

LetXbe any set,ifwe denote

Definition 2Let(X,||·||)be a normed space andX0is a subset ofXsuch that 0 ∈X0,where 0 is the neutral element ofX.A familyai:X→L0(M),i∈I,of additive maps is called uniformly equicontinuous in measure(u.e.m)(bilaterally uniformly equicontinuous in measure(b.u.e.m))at 0 onX0,if,given ε >0,δ >0,there is such γ >0 that for everyx∈X0with||x||<γ there existse∈P(M)for which

Let a positive linear map α :L1(M)→L1(M)be such that α(x)≤ 1 and τ(α(x))≤ τ(x)for everyx∈L1(M)∩M with 0≤x≤1.Note that,as it is shown in[2],there exist unique continuous extensions α:Lp(M)→Lp(M)for every 1≤p<∞ and a unique ultra-weakly continuous extension α:M→M.Let Φ be an N-function with 1

2 Individual ergodic theorems for noncommutative Orlicz space

Lemma 1Let Φ be an N-function.Ifan:LΦ(M)→L0(M),n=1,2,...,then the family{an}is u.e.m.(b.u.e.m.)at 0 on(LΦ(M),||·||Φ)if and only if it is u.e.m.(respectively,b.u.e.m.)at 0 on(LΦ+(M),||·||Φ).

ProofLet us consider the bilateral case.the “only if” part is obvious.To prove the “if” part,fix ε >0 and δ >0.Then there is such aimply that

Takex∈LΦ(M)such that||x||Φ< γ.Then we can writesuch thatOn the other hand,

Therefore,x1≤ |x1?x2|,x2≤ |x1?x2|,it follows thatμt(x1)≤ μt(x1?x2)andμt(x2)≤ μt(x1?x2).So we getSimilarly,we can provethen we have||xj||Φ≤ ||x||Φ< γ ,j=1,2,3,4.Therefore there existsej∈P(M)such that

Thus,the assertion holds.

48. Kind heaven help us now!: Gretel prays for heavenly assistance. Once again, these religious references were added by the Grimms.Return to place in story.

Assume now that the family{an}is always given by(2).

Proposition 1IfqΦ< ∞.Then the family{an}is b.u.e.m.at 0 on(LΦ(M),||·||Φ).

ProofIt now follows from Lemma 1,that it is sufficient to show that{an}is b.u.e.m.at 0 onsince S+is dense inby Theorem 3.1 of[3]we only show that{an}b.u.e.m.at 0 on(S+,||·||Φ).

So,let us fix ε >0 and δ >0.There exists such aand γ >0 be such thatwherecγis satisfied the inequality

Takex∈S+such thatWe have

whereHencefor alln.

andThen we have

Hence the required result follows.

Theorem 1IfqΦ<∞.Then for eachx∈LΦ(M),the averages(2)converge b.a.u.to some

ProofBy Proposition 1,we know that{an}is b.u.e.m.at 0 on(LΦ(M),||·||Φ).On the other hand,by Theorem 4.2 of[3],for eachx∈S,the averages(2)converge b.a.u.to someApplying Theorem 2.1 of[3],we know that for eachx∈LΦ(M),the averages(2)converge b.a.u.to somethen it follows immediately that{an(x)}converge toin measure.Next,we shall verify that

Letx∈S andthen by(1),we can prove thatApplying Lemma 3.4 of[8],Lemma 4.1 of[9]and Fatou Lemma,we obtain

which completes the proof.

Let Φ(t)is N-function,defineGenerally Φ(2)(t)is not N-function.If Φ(2)(t)is N-function,thenin the same way

Proposition 2Let Φ(t)andbe N-functions andqΦ<∞.Then the family{an}is u.e.m.at 0 on(LΦ(M),||·||Φ).

ProofBy Lemma 1 and Theorem 3.2 of[3],it is enough to show that{an}is u.e.m.at 0 on

Fixε>0 andδ>0.Since,due to Proposition 1,{an}is b.u.e.m.at 0 onthere exists such athatfor some

If one takesthen fromit follows thatHenceTherefore,there issuch thatτ(e⊥)≤εandAplying Kadison’s inequality,we arrive at

Thereforeand the assertion holds.

定理2If 2

ProofSinceSis dense inLΦ(M)and by Corollary 4.1 of[3]the sequencean(x)converges a.u.for allx∈S,applying Proposition 2 and Theorem 2.1 of[3],we infer that the averagesanconverge a.u.for allx∈LΦ(M),the fact that the corresponding limitsbelong toLΦ(M)follows as in Theorem 1.

主站蜘蛛池模板: 精品无码人妻一区二区| www欧美在线观看| 一个色综合久久| 欲色天天综合网| 国产在线八区| 亚洲精品在线观看91| 午夜精品国产自在| 人妻无码AⅤ中文字| 亚洲国产日韩一区| 国产香蕉在线视频| 国模粉嫩小泬视频在线观看| 精品91自产拍在线| 欧美性精品不卡在线观看| 麻豆国产精品| 亚洲综合激情另类专区| 福利姬国产精品一区在线| 国产精品福利尤物youwu | 国产美女无遮挡免费视频| 欧美成人日韩| 99热最新网址| 在线va视频| 亚洲精品图区| 五月天久久综合| 久久国产免费观看| 国产成人免费手机在线观看视频| 亚洲成aⅴ人片在线影院八| 亚洲国产成人无码AV在线影院L| 成人在线第一页| 人妻中文字幕无码久久一区| 97久久精品人人| 亚洲福利视频网址| 亚洲天堂日韩在线| 日韩精品高清自在线| 欧美成人a∨视频免费观看| 72种姿势欧美久久久久大黄蕉| 亚洲精品片911| 五月天福利视频| 免费日韩在线视频| 国产精品99在线观看| 成人va亚洲va欧美天堂| 一区二区影院| 青青草国产免费国产| 国产9191精品免费观看| 手机精品福利在线观看| 亚洲天堂视频在线观看| 99尹人香蕉国产免费天天拍| 国产综合网站| 国产第一页第二页| 免费在线看黄网址| 久久毛片免费基地| 亚洲欧美另类中文字幕| 中文字幕在线看| 亚洲国产精品国自产拍A| 亚洲国产天堂在线观看| 亚洲丝袜中文字幕| 成人在线不卡视频| 91精品国产一区自在线拍| 欧美黑人欧美精品刺激| 丰满少妇αⅴ无码区| 久久精品午夜视频| 久久综合亚洲色一区二区三区| 国产精品偷伦在线观看| 精品国产免费第一区二区三区日韩| 免费在线一区| a毛片基地免费大全| 国产精品短篇二区| 97se亚洲| 亚洲国产精品无码AV| 亚洲制服丝袜第一页| 三上悠亚精品二区在线观看| 99精品免费在线| 国产成人1024精品下载| 狠狠色成人综合首页| 996免费视频国产在线播放| 国产亚洲高清在线精品99| 精品人妻无码区在线视频| 又污又黄又无遮挡网站| 久久精品免费国产大片| 香蕉综合在线视频91| 五月丁香在线视频| 免费在线a视频| 狠狠v日韩v欧美v|