999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Hyper-Wiener Index of Graphs with Radius Two?

2014-11-02 07:52:46HEHuanyingANXinhui

HE Huan-ying,AN Xin-hui

(College of Mathematics and System Sciences,Xinjiang University,Urumqi,Xinjiang 830046,China)

Abstract: Let G be a connected graph,the hyper-Wiener index WW(G)of the graph G is defined as WW(G)=where d(u,v)denotes the distance between u and v of G.In this paper,we discuss mainly the hyper-Wiener index of trees with radius two and give the calculating formula.We also characterize graphs with the maximum hyper-Wiener index among all graphs of order with radius two,where t is some positive integer.

Key words:hyper-Wiener index;Distance;Radius

0 Introduction

Throughout this paper we consider simple connected graphs.We refer to[1]for unexplained terminology and notations.LetG=(V(G),E(G))be a simple connected graph withn=|V(G)|.For two verticesthe distancedG(u,v)betweenuandvinGis the length of a shortest path connectinguandvinG.The eccentricityecc(v)of a vertexvinGis the largest distance fromvto another vertex ofG,i.e.max{d(v,w)|w∈V(G)}.The diameter ofGis the maximum eccentricity inG,denoted bydiam(G).Similarly,the radius ofGis the minimum eccentricity inG,denoted byrad(G).

A vertexv∈V(G)is called a center ofGifecc(v)=rad(G).It is well-known that every tree has either exactly one center or two adjacent centers.The Wiener index of a graphGdenoted by is defined asKlein et al[2].extended the definition for all connected graphs,as a generalization of the Wiener index.The hyper-Wiener index of a graphGis defined as

The hyper-Wiener index is studied for various class of graphs,such as trees[3],unicyclic graphs[4],bicyclic graphs[5],graphs with matching number[6].For the mathematical properties of hyper-Wiener index and its applications in chemistry,we encourage the readers to consult[7,8].

Obviously,complete graphsKnhas the minimum hyper-Wiener index among all connected graphs of ordern(and so among all graphs of ordernwith radius one).For the case of radius two,it is not hard to prove that the extremal graphGnshould be the following:ifnis even,whereMis a perfect matching;ifnis odd,whereFis a maximum matching ofKnandeis an edge incident with the vertex of degreen?1 inKnF.

Chen[9]characterize graphs with the maximum Wiener index among all graphs of order n with radius two.In the paper,we discuss mainly the hyper-Wiener index of trees with radius two and give the calculating formula.We also characterize graphs with the maximum hyper-Wiener index among all graphs of orderwith radius two,wheretis some positive integer.

1 Preliminaries

Lemma 1For any connected graphG,there exists a spanning tree ofTofG,such thatrad(T)=rad(G),andWW(T)≥WW(G).

proofLetube a center ofG,andTbe a BFS-tree ofGrooted atu.The treeTis one,as we desired.

By Lemma 1,the graph with the maximum hyper-Wiener index among all graphs with radius 2 must be a tree.

The path numberp(G)of a graphGis defined to be the maximum cardinality of a subset of vertices that induces a path.Erd?os et al[10]showed that for any connected graphG,p(G)≥2rad(G)?1.

Lemma 2[9]For a treeGwith radiusr,2rad(G)≤p(G)≤2rad(G)+1.

Lemma 3IfTbe a tree of ordernwith the maximum hyper-Wiener index among all trees with radius two.Ifn=4,thenandp(T)=5 otherwise.

proofIfn=4,the result is trivial.So,letn≥5.By lemma 2,4≤p(T)≤5.By contradiction,suppose thatp(T)=4.LetP=v1v2v3v4be a path on four vertices inT.Every other vertex not onPmust be adjacent tov2orv3.Without loss of generality,letandxbe a pendent vertex adjacent tov3.SetIt is easy to check thatWWcontradicting the choice ofT.

Lemma 4[9]LetTbe a tree,then

(1)the center ofTis a vertex or two adjacent vertices,

(2)the center ofTis one vertex if and only if diam(T)=2 rad(T).

The above two Lemmas assert that ifTis a tree of ordernwith the maximum hyper-Wiener index among all trees of order at least five with radius two,thenThas the unique center.We denote byTn,t(n1,...,nt)the tree of ordernwith radius two and unique centervcsuch thatd(vc)=t,N(vc)={v1,...,vt}andd(vi)=ni+1.In particular,S(n,t)=Tn,t(n1,...,nt),with|ni?nj|≤ 1 for anyi,j.That is,S(n,t)denote the tree of ordernwith unique centervcandd(vc)=t,the leaves are balanced as possible as on each branch of the tree.

Lemma 5LetT=Tn,t(n1,...,nt)be the tree as described above,then

proofLetxi=|{(u,v)|u,v∈V(T),d(u,v)=i}|.Hence

By simple calculation,

Lemma 6Letandn1?n2≥2,then

By lemma 5,we derived

Corollary 1Letnandtbe two positive integers such thatn>t+2 and 1+t+kt≤n<1+t+(k+1)tfor some integerk≥0,and letp=n?1?t?kt.ThenWW(S(n,t)andp=0,then

proofBy the notation of previous Lemma,inS(n,t),the number ofequal tok+1 ispand the number ofequal tokist?p.So,by Lemma 5

Ifandp=0,by the above formula

Moreoverand

This proves

2 Main results

Lemma 7Letnandtbe two positive integers such thatn>t+2 andn≥5.Define a functionf(t)=10n2+then it has the only maximal pointandf(t)has only a roott0fort∈ [2,n],

proofIts derivativeLetwith the same root and same monotonicity.So,we only need considerg(t).

By the zero point theorem,g(t)at least has a root fort∈(?∞,0],fort∈(0,n]and fort∈(n,+∞),respectively.Sinceg(t)is three cubed,so it has only three roots.Henceg(t)has only a root fort∈(0,n],so we admitf(t)has only a roott0fort∈(0,n].

since

So by the zero point theorem,

Sinceg(t)=6t2+14t? 16nt≤ 6t2+14t? 16t2= ?10t2+14t.We admitg(t)<0 fort≥ 2.Henceg(t)is monotonic decreasing fort∈ [2,n],andg(t0)=0.That is

Sot0is the only maximal point forf(t)witht∈[2,n],f(t0)≥f(t)fort∈[2,n].

For a clear understanding of our theorem as follow,we make some remarks.Iffor some positive integert0,thenBy Corollary 1,WW(S(n,t0))=WW(S(n,t0+1)).

Theorem 1LetTbe a tree with the maximum hyper-Wiener index among all trees of ordernwith radius two.Iffor some positive integert0,then√

proofBy Lemma 3,letvcbe the unique center ofT,and letd(vc)=t.SetN(vc)={v1,v2,···,vt},and|N(vi)vc|=nifor 1≤i≤t.Corollary 1 assert that|ni?nj|≤1 for anyi,j,and thusTS(n,t)for somet.To showt=t0,as specified in the theorem,it suffices to show thatWW(S(n,t0))>WW(S(n,t)for anytt0.By Corollary 1,

wherewe have

By the definition ofandp=0.

Case 1t∈[2,t0?1]

Case 2t∈[t0+2,n?1)

We have

SoWW(S(n,t0))>f(t0+2).It follows thatWW(S(n,t0))>f(t0+2)≥f(t)≥WW(S(n,t)).

By Corollary 1,ifthenWW(S(n,t0))=WW(S(n,t0+1)).It follow thatThus we finish the proof.

LetTbe a tree with the maximum hyper-Wiener index among all trees of ordern,iffor some positive integert,we conjecture thatFor example,ifn=1060,thent0=31,andWW(S(n,t0))>WW(S(n,t0+1)),andIfn=1600,thent0=37,WW(S(n,t0))

主站蜘蛛池模板: 国产欧美亚洲精品第3页在线| 精品亚洲国产成人AV| 亚洲成人高清在线观看| 中文字幕波多野不卡一区| 91精品免费久久久| 中文字幕啪啪| 十八禁美女裸体网站| 久99久热只有精品国产15| 亚洲人成人伊人成综合网无码| 亚洲手机在线| 亚洲区一区| 波多野结衣无码AV在线| 五月婷婷综合网| 91麻豆精品视频| 国产农村1级毛片| 国产欧美日韩另类| 国产高清国内精品福利| 国产成人AV综合久久| 99这里精品| 香蕉在线视频网站| 无码日韩视频| 国产精品成人久久| 久久毛片基地| 国产精品.com| 免费看a级毛片| 久久99精品久久久大学生| 国产成人精品免费视频大全五级 | 伊人激情综合网| 影音先锋丝袜制服| 国产av一码二码三码无码| 她的性爱视频| 波多野结衣AV无码久久一区| 亚欧美国产综合| 亚洲国产综合第一精品小说| 国产高清在线丝袜精品一区| 日韩无码视频专区| 国产精品永久久久久| 国产成人免费| 九色视频在线免费观看| 91小视频在线观看| 亚洲大学生视频在线播放| 国产成本人片免费a∨短片| 国产91精品最新在线播放| 中国一级特黄视频| 日韩精品成人在线| 欧美一区日韩一区中文字幕页| 国产毛片基地| 欧美精品三级在线| 污网站在线观看视频| 精品免费在线视频| 色哟哟精品无码网站在线播放视频| 日本国产一区在线观看| 91在线国内在线播放老师| 国产精选自拍| 亚洲丝袜中文字幕| 亚洲欧美日韩中文字幕在线| 91九色国产porny| 色精品视频| 色丁丁毛片在线观看| 天堂亚洲网| 日韩a级毛片| 久久久久免费看成人影片 | 亚洲精品中文字幕无乱码| 亚洲天堂网视频| 日韩成人在线一区二区| 亚洲精品爱草草视频在线| a毛片基地免费大全| www.av男人.com| 国产97区一区二区三区无码| 国产中文在线亚洲精品官网| 国产AV毛片| 国产成人亚洲毛片| 欧美性天天| 国产高清在线观看| 久久精品无码一区二区国产区| 国产91小视频| 久久婷婷五月综合色一区二区| 国产小视频在线高清播放| 亚洲欧美日韩中文字幕在线一区| 婷婷色狠狠干| 久久女人网| 亚洲美女操|