999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

小議極限理論

2014-11-20 19:06:55王莎莎
文理導航 2014年32期

王莎莎

【摘 要】本文主要總結了一些求一元函數極限的常用方法,以便深入的理解和掌握極限概念,并把極限的思想運用到更廣泛的區域中。

【關鍵詞】極限理論;歸結原則;拉格朗日定理

一、引言

極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論為主要工具來研究函數的一門學科。極限思想是微積分的基本思想,所謂極限思想,是用極限概念分析和解決問題的一種數學思想,用極限思想解決問題的一般步驟可概括為:對于被考察的未知量,先設法構造一個與它有關的變量,確認這變量通過無限過程的結果就是所求的未知量,最后用極限計算來得到這結果。所以證明極限存在和求極限的方法就需要我們去探究。

二、求一元函數極限的一般方法

1.極限定義求極限

定義1.1 設函數f在點xo的某個空心領域U·(xo;δ)內有定義,A為定數。若對任給的ε>0,存在正數ε(無論它多么小),總存在正數δ,使得當x滿足不等式0<|x-xo|<δ時,對應的函數值f(x)都滿足不等式:

|f(x)-A|<ε或f(x)→A

那么常數A就叫做函數f(x)當x→xo時的極限。

例1.1設f(x)=,證明f(x)=4。

證 由于當x≠2時,|f(x)-4|=|-4|=|x-2|

故對給定的ε>0,只要取δ=ε,則當0>|x-2|<δ時有|f(x)-4|<ε.這就證明了f(x)=4。定義1.1設f為定義在[a,+∞)上的函數,A為定數。若對任給的ε>0,存在正數M(≥a),使得當x>M時有

|f(x)-A|<ε,

則稱函數f當x趨于+∞時以A為極限,記作

f(x)=A或f(x)→A(x→∞)

例1.2 證明=0。

證 任給ε>0,取=M,則當|x|>M時有

|-0|=<=ε

所以=0.

2.利用兩個重要的極限求極限

=1;=e

例2.1 求(1+2x)。

解(1+2x)=[(1+2x).(1+2x)]=e2。

3.利用變量替換及等價無窮小量求極限

通過變量替換,把求某個極限轉化為求另一個極限,若后者是已知的,則問題就解決了。

(1)設φ(x)=+∞,f(u)=A,則f[φ(x)]=f(u)=A,(u=φ(x))。

例3.1 求[x-x2ln(1+)]

解 用變量替換法,令x=,則

原式=[-]==

==

(2)常用的等價無窮小:當x→0時,sinx~x,tanx~x,(1+x)α~1+ax,arctanx~x,1-cosx~,ln(1+x)~x,ex-1~x。

4.用洛比達法則求極限

洛比達法則只直接適用于型和型不定式極限,0·∞,1∞,0o,∞o,∞,-∞等類型,經過簡單變換,可化為型或型極限。

例4.1求x·lnx

解 由是0·∞型不定式極限,有恒等xlnx=轉化為型不定式極限。

所以,原式===0

5.利用歸結原則求極限

歸結原則:f(x)=A?對任何xn→x0(n→∞)有f(xn)=A。

6.利用拉格朗日中值定理求極限

定理[1]若函數f(x)滿足如下條件:

①在閉區間[a,b]上連續;

②在開區間(a,b)內可導。

則在(a,b)內至少存在一點ξ,使得f(b)-f(a)=f′(ξ)(b-a)(1)

或者f(b)-f(a)=f′(a+θ(b-a))(b-a) (0<θ<1)(2)

在教學過程中可將這些求一元函數極限的方法充分運用于教學實踐中,能使學生在解題過程中享受創造的樂趣,從而能夠激發起學生的學習數學的興趣和刻苦研究數學問題的熱情和毅力,培養學生縝密的思維能力和運用數學思想解決實際生活中遇到的各類問題。

【參考文獻】

[1]趙顯曾,黃安才著.數學分析的方法與題解.西安:陜西師范大學出版社,2005.3

[2]華東師范大學數學系.數學分析.上冊.北京:高等教育出版社,2006.8

[3]華東師范大學數學系.數學分析.下冊.北京:高等教育出版社,2006.6

[4]李志林.高等數學:經濟管理、計算機類.西安:西北工業大學出版社,2008.7

[5]數學.中國就業培訓技術指導中心組織編寫.北京:中國勞動社會保障出版社,2002.3

[6]李永樂,李正元.考研數學復習全書.國家行政學院出版社,2011.2

[7]陳文燈,黃先開.主編.考研數學復習指南.北京理工大學出版社,2012.1

(作者單位:陜西省商業學校)

【摘 要】本文主要總結了一些求一元函數極限的常用方法,以便深入的理解和掌握極限概念,并把極限的思想運用到更廣泛的區域中。

【關鍵詞】極限理論;歸結原則;拉格朗日定理

一、引言

極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論為主要工具來研究函數的一門學科。極限思想是微積分的基本思想,所謂極限思想,是用極限概念分析和解決問題的一種數學思想,用極限思想解決問題的一般步驟可概括為:對于被考察的未知量,先設法構造一個與它有關的變量,確認這變量通過無限過程的結果就是所求的未知量,最后用極限計算來得到這結果。所以證明極限存在和求極限的方法就需要我們去探究。

二、求一元函數極限的一般方法

1.極限定義求極限

定義1.1 設函數f在點xo的某個空心領域U·(xo;δ)內有定義,A為定數。若對任給的ε>0,存在正數ε(無論它多么小),總存在正數δ,使得當x滿足不等式0<|x-xo|<δ時,對應的函數值f(x)都滿足不等式:

|f(x)-A|<ε或f(x)→A

那么常數A就叫做函數f(x)當x→xo時的極限。

例1.1設f(x)=,證明f(x)=4。

證 由于當x≠2時,|f(x)-4|=|-4|=|x-2|

故對給定的ε>0,只要取δ=ε,則當0>|x-2|<δ時有|f(x)-4|<ε.這就證明了f(x)=4。定義1.1設f為定義在[a,+∞)上的函數,A為定數。若對任給的ε>0,存在正數M(≥a),使得當x>M時有

|f(x)-A|<ε,

則稱函數f當x趨于+∞時以A為極限,記作

f(x)=A或f(x)→A(x→∞)

例1.2 證明=0。

證 任給ε>0,取=M,則當|x|>M時有

|-0|=<=ε

所以=0.

2.利用兩個重要的極限求極限

=1;=e

例2.1 求(1+2x)。

解(1+2x)=[(1+2x).(1+2x)]=e2。

3.利用變量替換及等價無窮小量求極限

通過變量替換,把求某個極限轉化為求另一個極限,若后者是已知的,則問題就解決了。

(1)設φ(x)=+∞,f(u)=A,則f[φ(x)]=f(u)=A,(u=φ(x))。

例3.1 求[x-x2ln(1+)]

解 用變量替換法,令x=,則

原式=[-]==

==

(2)常用的等價無窮小:當x→0時,sinx~x,tanx~x,(1+x)α~1+ax,arctanx~x,1-cosx~,ln(1+x)~x,ex-1~x。

4.用洛比達法則求極限

洛比達法則只直接適用于型和型不定式極限,0·∞,1∞,0o,∞o,∞,-∞等類型,經過簡單變換,可化為型或型極限。

例4.1求x·lnx

解 由是0·∞型不定式極限,有恒等xlnx=轉化為型不定式極限。

所以,原式===0

5.利用歸結原則求極限

歸結原則:f(x)=A?對任何xn→x0(n→∞)有f(xn)=A。

6.利用拉格朗日中值定理求極限

定理[1]若函數f(x)滿足如下條件:

①在閉區間[a,b]上連續;

②在開區間(a,b)內可導。

則在(a,b)內至少存在一點ξ,使得f(b)-f(a)=f′(ξ)(b-a)(1)

或者f(b)-f(a)=f′(a+θ(b-a))(b-a) (0<θ<1)(2)

在教學過程中可將這些求一元函數極限的方法充分運用于教學實踐中,能使學生在解題過程中享受創造的樂趣,從而能夠激發起學生的學習數學的興趣和刻苦研究數學問題的熱情和毅力,培養學生縝密的思維能力和運用數學思想解決實際生活中遇到的各類問題。

【參考文獻】

[1]趙顯曾,黃安才著.數學分析的方法與題解.西安:陜西師范大學出版社,2005.3

[2]華東師范大學數學系.數學分析.上冊.北京:高等教育出版社,2006.8

[3]華東師范大學數學系.數學分析.下冊.北京:高等教育出版社,2006.6

[4]李志林.高等數學:經濟管理、計算機類.西安:西北工業大學出版社,2008.7

[5]數學.中國就業培訓技術指導中心組織編寫.北京:中國勞動社會保障出版社,2002.3

[6]李永樂,李正元.考研數學復習全書.國家行政學院出版社,2011.2

[7]陳文燈,黃先開.主編.考研數學復習指南.北京理工大學出版社,2012.1

(作者單位:陜西省商業學校)

【摘 要】本文主要總結了一些求一元函數極限的常用方法,以便深入的理解和掌握極限概念,并把極限的思想運用到更廣泛的區域中。

【關鍵詞】極限理論;歸結原則;拉格朗日定理

一、引言

極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論為主要工具來研究函數的一門學科。極限思想是微積分的基本思想,所謂極限思想,是用極限概念分析和解決問題的一種數學思想,用極限思想解決問題的一般步驟可概括為:對于被考察的未知量,先設法構造一個與它有關的變量,確認這變量通過無限過程的結果就是所求的未知量,最后用極限計算來得到這結果。所以證明極限存在和求極限的方法就需要我們去探究。

二、求一元函數極限的一般方法

1.極限定義求極限

定義1.1 設函數f在點xo的某個空心領域U·(xo;δ)內有定義,A為定數。若對任給的ε>0,存在正數ε(無論它多么小),總存在正數δ,使得當x滿足不等式0<|x-xo|<δ時,對應的函數值f(x)都滿足不等式:

|f(x)-A|<ε或f(x)→A

那么常數A就叫做函數f(x)當x→xo時的極限。

例1.1設f(x)=,證明f(x)=4。

證 由于當x≠2時,|f(x)-4|=|-4|=|x-2|

故對給定的ε>0,只要取δ=ε,則當0>|x-2|<δ時有|f(x)-4|<ε.這就證明了f(x)=4。定義1.1設f為定義在[a,+∞)上的函數,A為定數。若對任給的ε>0,存在正數M(≥a),使得當x>M時有

|f(x)-A|<ε,

則稱函數f當x趨于+∞時以A為極限,記作

f(x)=A或f(x)→A(x→∞)

例1.2 證明=0。

證 任給ε>0,取=M,則當|x|>M時有

|-0|=<=ε

所以=0.

2.利用兩個重要的極限求極限

=1;=e

例2.1 求(1+2x)。

解(1+2x)=[(1+2x).(1+2x)]=e2。

3.利用變量替換及等價無窮小量求極限

通過變量替換,把求某個極限轉化為求另一個極限,若后者是已知的,則問題就解決了。

(1)設φ(x)=+∞,f(u)=A,則f[φ(x)]=f(u)=A,(u=φ(x))。

例3.1 求[x-x2ln(1+)]

解 用變量替換法,令x=,則

原式=[-]==

==

(2)常用的等價無窮小:當x→0時,sinx~x,tanx~x,(1+x)α~1+ax,arctanx~x,1-cosx~,ln(1+x)~x,ex-1~x。

4.用洛比達法則求極限

洛比達法則只直接適用于型和型不定式極限,0·∞,1∞,0o,∞o,∞,-∞等類型,經過簡單變換,可化為型或型極限。

例4.1求x·lnx

解 由是0·∞型不定式極限,有恒等xlnx=轉化為型不定式極限。

所以,原式===0

5.利用歸結原則求極限

歸結原則:f(x)=A?對任何xn→x0(n→∞)有f(xn)=A。

6.利用拉格朗日中值定理求極限

定理[1]若函數f(x)滿足如下條件:

①在閉區間[a,b]上連續;

②在開區間(a,b)內可導。

則在(a,b)內至少存在一點ξ,使得f(b)-f(a)=f′(ξ)(b-a)(1)

或者f(b)-f(a)=f′(a+θ(b-a))(b-a) (0<θ<1)(2)

在教學過程中可將這些求一元函數極限的方法充分運用于教學實踐中,能使學生在解題過程中享受創造的樂趣,從而能夠激發起學生的學習數學的興趣和刻苦研究數學問題的熱情和毅力,培養學生縝密的思維能力和運用數學思想解決實際生活中遇到的各類問題。

【參考文獻】

[1]趙顯曾,黃安才著.數學分析的方法與題解.西安:陜西師范大學出版社,2005.3

[2]華東師范大學數學系.數學分析.上冊.北京:高等教育出版社,2006.8

[3]華東師范大學數學系.數學分析.下冊.北京:高等教育出版社,2006.6

[4]李志林.高等數學:經濟管理、計算機類.西安:西北工業大學出版社,2008.7

[5]數學.中國就業培訓技術指導中心組織編寫.北京:中國勞動社會保障出版社,2002.3

[6]李永樂,李正元.考研數學復習全書.國家行政學院出版社,2011.2

[7]陳文燈,黃先開.主編.考研數學復習指南.北京理工大學出版社,2012.1

(作者單位:陜西省商業學校)

主站蜘蛛池模板: 久久久久九九精品影院| 色视频久久| 欧美亚洲国产精品第一页| 精品国产网| 亚洲天堂免费观看| 91久久偷偷做嫩草影院电| 国产呦视频免费视频在线观看| A级毛片无码久久精品免费| 亚洲人成网站在线播放2019| 免费人成又黄又爽的视频网站| 久草性视频| 久久精品国产电影| 免费 国产 无码久久久| 国产99久久亚洲综合精品西瓜tv| 岛国精品一区免费视频在线观看 | 国产91小视频| 国产精品成人第一区| 国产一级视频在线观看网站| 九九九精品视频| 久久综合干| 免费观看男人免费桶女人视频| 久久男人资源站| 不卡视频国产| 欧美啪啪网| 国产成人AV综合久久| 在线国产毛片| 国产亚洲欧美在线人成aaaa | 国产精品女人呻吟在线观看| 全部免费特黄特色大片视频| 国产精品爆乳99久久| 波多野结衣中文字幕久久| 2021精品国产自在现线看| 国产激情无码一区二区三区免费| 91在线激情在线观看| 992tv国产人成在线观看| 亚洲三级视频在线观看| 免费人成视网站在线不卡| 色综合中文| 97se亚洲| 久久天天躁狠狠躁夜夜2020一| 国产在线观看成人91| 91久久青青草原精品国产| 在线欧美日韩| 日韩视频福利| 欧美福利在线观看| 92精品国产自产在线观看| 亚洲日韩第九十九页| 久久亚洲精少妇毛片午夜无码| 亚洲va在线∨a天堂va欧美va| 国产极品美女在线| 又爽又大又光又色的午夜视频| 91麻豆精品视频| 久久香蕉欧美精品| 91精品伊人久久大香线蕉| 欧美在线导航| 国产91透明丝袜美腿在线| 国产高清精品在线91| 国产资源站| 亚洲欧洲日韩综合| 国产精品99久久久| 无码不卡的中文字幕视频| 免费国产一级 片内射老| 四虎影视无码永久免费观看| 亚洲啪啪网| 91麻豆国产视频| 无码日韩视频| 国产免费久久精品99re丫丫一| 精品国产99久久| 青青草欧美| 国产中文在线亚洲精品官网| 亚洲一级色| 国产欧美亚洲精品第3页在线| 亚洲高清中文字幕| 欧美日韩激情| 99爱视频精品免视看| 天天操精品| 亚洲国产精品VA在线看黑人| 国内嫩模私拍精品视频| 欧美亚洲一区二区三区导航 | 日韩欧美91| 91免费国产在线观看尤物| 欧美无遮挡国产欧美另类|