張立松,閆相禎,楊秀娟,王欣
(1. 中國石油大學(華東) 儲運與建筑工程學院,山東 青島,266580;2. 中國石油集團 科學技術研究院廊坊分院,河北 廊坊,065007)
致密碎屑巖裂縫性油氣藏儲量在低滲透儲層總儲量中占40%左右,因此該類型儲層已成為油氣勘探開發的重要對象[1]。對于這類儲層的勘探開發,最大難點在于預測儲層裂縫發育程度和分布范圍[2]。從理論上講,構造應力場是裂縫形成的最重要原因[3],因此,現階段國內外學者主要利用巖石破裂準則對儲層裂縫進行定量預測,并且取得了一定成果[4?5]。周新桂等[6]以有限元數值模擬方法為基礎,巖石破裂法和能量法相結合,建立了儲層構造裂縫分布定量預測數學模型。閆相禎等[7]基于 Griffith和 Coulomb-Navier準則建立了儲層裂縫張、剪破裂率的計算模型。在上述研究過程中,巖石破裂準則主要以 Griffith張破裂準則和Coulomb-Navier剪破裂準則為主[6]。Griffith張破裂準則是基于材料微觀結構的裂隙變形、擴展得到的,比較符合巖石內部存在各種裂隙的情況,因此適用于預測儲層張拉型裂縫。Coulomb-Navier剪破裂準則并未考慮巖石本身力學性質的差異,這使得該準則更加適用于各向同性、均質、連續性儲層。在儲層條件相對破碎,天然裂縫之間相互干擾較強的情況下,該準則適用性較差[8?9]。相對于 Coulomb-Navier準則,Hoek-Brown準則除適用于壓剪破裂外[8],還是一種評價均質巖體、裂縫性巖體及各向異性非均質巖體的非線性準則,非常適用于預測致密碎屑巖裂縫性儲層的裂縫特性。為此,本文作者結合 Griffith準則和Hoek-Brown準則的優點,將其應用到致密碎屑巖儲層裂縫預測中,推導得出了裂縫發育定量評價方法。針對某油田 H17區塊碎屑巖儲層裂縫發育程度進行預測,預測結果與實測值吻合較好。
Hoek-Brown準則[10?11]除適用于結構完整各向同性的均質巖石外,還適用于破碎巖體及各向異性的非均質巖體等。其表達式如下:

式中:σ1和σ3為巖石破壞時的最大、最小主應力,MPa;σci為完整巖塊試件的單軸抗壓強度,MPa;mb為巖體常數,與完整巖石的mi有關,無量綱;s和α為巖體特性系數,無量綱。
GSI為地質強度指標[11?13],Hoek-Brown 參數可表述為地質強度指標GSI的函數,其形式為:


式中:IGSI為地質強度指標;D為巖體弱化因子,取值為0~1。
對應于Mohr-Coulomb準則,Hoek-Brown準則也可采用主應力形式表示抗剪強度[10],即

式中,dσ1/dσ3可通過式(1)兩邊求導得到:

儲層裂縫發育主要以張破裂和剪破裂為主,為此引入張破裂系數ξ和剪破裂系數ζ,并根據Griffith準則[14]和式(5)計算ξ和ζ:

式中:[σt]和[τ]為巖石的張、剪破裂強度;當ξ和ζ等于1時,即發生巖石的張、剪破裂。
在巖石張、剪破裂預測的基礎上,結合不同性質裂縫對儲層構造裂縫發育程度貢獻不同,定義儲層裂縫綜合發育系數λ:

式中:n為張拉裂縫和剪切裂縫的比值,可由目的層巖心中張、剪裂縫的統計資料給出。理論上認為λ愈大,儲層裂縫愈發育。
儲層中單位體積的形變能量[6](或應變比能)W表達式為

為了彌補λ不能單獨決定儲層裂縫程度的不足,把形變能量值作為補充判據,共同確定裂縫發育。
為了定量評價儲層裂縫發育程度,邀請多位權威專家結合巖芯裂縫參數的室內測試,共同給出裂縫發育等級與發育系數的關系,見表 1。儲層裂縫發育等級標準的建立過程可歸結為:首先基于巖芯裂縫參數的室內測試確定裂縫發育等級;然后建立裂縫參數與裂縫發育系數的映射關系;最后給出裂縫發育等級對應的發育系數區間范圍。
在引入裂縫綜合發育系數的基礎上,把致密碎屑巖裂縫性儲層裂縫發育分成4個等級:裂縫極發育區(A)、裂縫發育區(B)、裂縫較發育區(C)、裂縫欠發育區(D)。

表1 裂縫發育程度等級劃分Table 1 Classification of fracture development
在利用式(9)和(10)預測儲層裂縫分布時,需首先確定儲層應力場分布。對于待研究儲層而言,其應力場分布通常需要反演確定,這個問題可以采用多目標約束優化方法[15?16]進行求解。對于儲層應力場最優化反演問題,可表示為

式中,X為設計變量;gi(x),hi(x)和wi(x)為狀態變量或函數;f1(X)為關鍵井點處實測主應力與反演主應力構造的目標函數;f2(X)為關鍵井點處實測最大主應力方位與反演最大主應力方位構造的目標函數;對于儲層應力場反演而言,狀態變量的實質應為主應力的函數。
在求解式(11)這類約束最優化問題時,通常將其變為無約束問題,即添加懲罰函數項,此時式(11)將變為無約束目標函數。通過尋找無約束目標函數的極小值,并將取得極小值時的設計變量施加給儲層應力場有限元模型進行正演計算,進而確定儲層應力場的分布規律。
某油田H17區塊E1f3儲層屬于深層致密碎屑巖裂縫性油氣藏,巖性以粉砂巖、泥質粉砂巖為主,泥質膠結,較疏松,孔隙度和滲透率都較低。E1f3儲層東西向、南北向長度分別為5 km和3 km,共包括H17,H17-1,H17-2,H17-3,H17-4及H11共6口井。
以區塊內H17-2井儲層(2 850~2 890 m)為研究對象,圖1~2所示為目標層段的水平主應力預測結果。在此基礎上,結合式(9)計算儲層裂縫沿井筒的縱向發育系數,如圖3所示。

圖1 儲層最大水平主應力剖面示意圖Fig. 1 Reservoir maximum principal stress profile

圖2 儲層最小水平主應力剖面示意圖Fig. 2 Reservoir minimum principal stress profile

圖3 H17-2井儲層裂縫綜合發育系數分布圖Fig. 3 Reservoir fracture-developing index at wellbore direction of H17-2
從圖1~2可以看出:H17-2井儲層段最大主應力、最小主應力分別集中在71~75 MPa和47.5~51 MPa之間,其中2 874~2 878 m儲層段最大、最小主應力較大;垂向主應力分布在65.8~66.8 MPa之間,主應力與垂深近似呈線性關系。
從圖3可以看出:H17-2井儲層裂縫綜合發育系數主要分布在 0.7~1.0之間。統計分析該井井筒方向目標層段320個點的巖石破裂方位可知:H17-2井儲層段裂縫發育方位在NE53°左右,這與該井進行的微震裂縫方位實測結果NE50.6°(見圖3)基本相符,兩者絕對誤差僅為 2.4°,這在一定程度上證明了預測結果的正確性。圖4所示為H17-2井微震點分布及裂縫傾向示意圖。

圖4 H17-2井微震點分布及裂縫傾向示意圖Fig. 4 Micro-seismic points distribution and fracture tendency of H17-2
以該區塊E1f3儲層(頂面深度為2 760 m)為研究對象,依據多目標約束優化方法求解應力場。表2所示關鍵井點處的最大、最小主應力大小及方位的反演值和實測值。

表2 關鍵井點主應力及方位反演值與實際值對比Table 2 Comparison between calculating results and measured stress of principal stress
從表2可以看出:該區塊內H17-2,H17-3和H11井的最小水平主應力反演值與實測值相對誤差均小于4%;H17-2和H17-3井的最大水平主應力反演值與實測值相對誤差均小于 3%。另外,研究區塊最大水平主應力方位為NE向,其中H17-2和H11這2口井的反演結果與實測結果差值均在3°以內。上述分析表明:H17研究區塊應力場反演結果滿足工程要求。圖5和6分別為E1f3儲層最大、最小水平主應力等值線與方位分布圖。
從圖5和6可以看出,E1f3儲層最大、最小水平主應力分布在?58~?81 MPa和?43~?57 MPa之間,斷裂帶對應力場分布有較明顯影響。最大水平主應力由東向西呈逐漸減小趨勢,應力高值區主要分布在研究區塊的西南部區域;最大水平主應力方向分布在NE40°~NE70°。
由現場地質資料和室內實驗確定E1f3儲層地質強度指標IGSI=55;Hoek-Brown常數mi=15;α=0.5;D=0.46。根據儲層應力場反演結果,并結合式(9)定量預測儲層裂縫的發育程度。首先,根據巖心觀察等多種方式并參考其他地區的統計結果,得到取心井或其他井附近的張裂縫和剪裂縫所占權系數;然后,計算出E1f3儲層內每個單元的張破裂率和剪破裂率,并對其分別進行變量標準化,將標準化后的張破裂率和剪破裂率分別乘以相應的權系數(張破裂率和剪破裂率的加權系數分別為 0.7和 0.3),相加得出單元的裂縫綜合發育系數λ,并以此來判斷裂縫發育程度。圖 7所示為E1f3儲層裂縫綜合發育系數的等值線分布圖。

圖5 儲層最大水平主應力等值線分布圖Fig. 5 Maximum horizontal principal stress results

圖6 儲層最小水平主應力等值線分布圖Fig. 6 Minimum horizontal principal stress results
從圖7可以看出:E1f3儲層裂縫綜合發育系數主要集中于 0.1~1.5之間。在研究區塊的中部和南部斷層區域,發育系數比較高,說明此處的裂縫發育程度較高。裂縫綜合發育系數由東向西逐漸增大,西部的裂縫發育范圍和強度均比東部的大,且斷層斷裂帶附近為裂縫較發育地區。根據儲層裂縫發育系數計算結果,圖8所示為E1f3儲層裂縫發育程度等級。

圖7 儲層裂縫綜合破裂發育系數等值線分布圖Fig. 7 Reservoir fracture-developing index contour map

圖8 儲層裂縫等級劃分示意圖Fig. 8 Reservoir fracture classification
計算結果表明,E1f3儲層的西南部區域為裂縫極發育區(A),而東部區域為裂縫欠發育區(D),這與現場得到的地質資料情況較為一致。
(1) 利用多目標約束優化方法反演儲層應力場分布,結合Griffith準則和Hoek-Brown準則,建立了致密碎屑巖裂縫性儲層構造裂縫發育定量預測模型。
(2) 定義儲層裂縫綜合發育系數表征裂縫發育程度,并基于該系數將儲層裂縫等級劃分為極發育區、發育區、較發育區和欠發育區4個等級,建立了致密碎屑巖裂縫性儲層裂縫發育等級標準。
(3) 預測了某油田H17區塊E1f3儲層平面裂縫分布規律,并以X17-2井為例驗證了裂縫發育方位的預測結果與實測結果。結果表明,H17-2井裂縫發育方位為NE53°,與微地震得到的裂縫方位實測值NE50.6°僅相差2.4°。
[1]劉振峰, 董寧, 張永貴, 等. 致密碎屑巖儲層地震反演技術方案及應用[J]. 石油地球物理勘探, 2012, 47(2): 298?304.LIU Zhenfeng, DONG Ning, ZHANG Yonggui, et al. Seismic inversion program for tight clastic reservoir and its application[J].Oil Geophysical Prospecting, 2012, 47(2): 298?304.
[2]周新桂, 張林炎, 范昆. 油氣盆地低滲透儲層裂縫預測研究現狀及進展[J]. 地質評論, 2006, 52(6): 777?782.ZHOU Xingui, ZHANG Linyan, FAN Kun. The research situation and progresses of natural fracture for low permeability reservoirs in oil and gas basin[J]. Geological Review, 2006,52(6): 777?782.
[3]蘇培東, 秦啟榮, 黃潤秋. 儲層裂縫預測研究現狀與展望[J].西南石油學院學報, 2005, 27(5): 14?17.SU Peidong, QIN Qirong, HUANG Runqiu. Prospects and status for the study on reservoir fractures[J]. Journal of Southwest Petroleum Institute, 2005, 27(5): 14?17.
[4]張流, 周永勝. 儲層裂縫發育程度的判別準則[J]. 石油學報,2004, 25(4): 33?37.ZHANG Liu, ZHOU Yongsheng. Evaluation criteria for development degree of micro cracks in oil and gas reservoir[J].Acta Petrolei Sinica, 2004, 25(4): 33?37.
[5]曾聯波, 漆家福, 王永秀. 低滲透儲層構造裂縫的成因類型及其形成地質條件[J]. 石油學報, 2007, 28(4): 52?56.ZENG Lianbo, QI Jiafu, WANG Yongxiu. Origin type of tectonic fractures and geological conditions in low-permeability reservoirs[J]. Acta Petrolei Sinica, 2007, 28(4): 52?56.
[6]周新桂, 張林炎, 屈雪峰, 等. 沿河灣探區低滲透儲層構造裂縫特征及分布規律定量預測[J]. 石油學報, 2009, 30(2):195?200.ZHOU Xingui, ZHANG Linyan, QU Xuefeng, et al.Characteristics and quantitative prediction of distribution laws of tectonic fractures of low-permeability reservoirs in Yanhewan area[J]. Acta Petrolei Sinica, 2009, 30(2): 195?200.
[7]閆相禎, 劉欽節, 楊秀娟. 位錯模型在低滲透儲層裂縫預測中的應用[J]. 石油學報, 2009, 30(2): 252?258.YAN Xiangzhen, LIU Qinjie, YANG Xiujuan. Application of dislocation model in fracture prediction of low-permeability reservoir[J]. Acta Petrolei Sinica, 2009, 30(2): 252?258.
[8]Klerckpa, Sellersej, Owendrj. Discrete fracture in quasi-brittle materials under compressive and tensile stress states[J].Computer Methods in Applied Mechanics and Engineering, 2004,193(27/29): 3035?3056.
[9]王平全, 唐林, 邱先強. 適合于破碎體的強度判別準則優選[J]. 西南石油學院學報, 1998, 20(3): 18?22.WANG Pingquan, TANG Lin, QIU Xianqiang. The optimization of failure criteria for disintegrated rock mass[J]. Journal of Southwest Petroleum Institute, 1998, 20(3): 18?22.
[10]Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion-2002 Edition[C]//Proc NARMS-TAC Conference.Toronto: University of Toronto, 2002: 267?273.
[11]Hoek E, Marinos P, Benissi M. Applicability of the geological strength index(GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation[J].Bulletin of Engineering Geology and the Environment, 1998,57(2): 151?160.
[12]Marinos P, Hoek E. GSI: A geologically friendly tool for rock mass strength estimation[C]//Proceeding of Geoengineering 2000 Conference. Melboume: Technomic Publishing Corporation, 2000: 1422?1442.
[13]Marinos V, Marinos P, Hoek E. Geological Strength Index:applications and limitations[J]. Bulletin of Engineering Geology and the Environment, 2005, 64(1): 55?65.
[14]張浪, 劉東升, 宋強輝, 等. 基于 Griffith 理論巖石裂紋擴展的可靠度分析[J]. 工程力學, 2008, 25(9): 156?161.ZHANG Lang, LIU Dongsheng, SONG Qianghui, et al.Reliability analysis for propagation of rock crack based on griffith theory[J]. Engineering Mechanics, 2008, 25(9):156?161.
[15]閆相禎, 楊秀娟, 王建軍, 等. 基于多井約束優化方法的低滲油藏應力場反演與裂縫預測技術及應用[C]//何慶華, 張煜,張占峰, 等. 中國石油學會第一屆油氣田開發技術大會論文集. 北京: 石油工業出版社, 2006: 142?148.YAN Xiangzhen, YANG Xiujuan, WANG Jianjun, et al.Application of stress inversion and fracture prediction technique in low permeability reservoir based on multi-constraints optimization method[C]//HE Qinghua, ZHANG Yu, ZHANG Zhanfeng, et al. Proceedings of the 1st Chinese Petroleum Society conference on technology and development of oil & gas field. Beijing: Petroleum Industry Press, 2006: 142?148.
[16]劉欽節, 閆相禎, 楊秀娟. 優化反分析方法在地應力與裂縫研究中的應用[J]. 石油鉆探技術, 2009, 37(2): 26?31.LIU Qinjie, YAN Xiangzhen, YANG Xiujuan. Application of optimization back-analysis method in reservoir stress and fracture study[J]. Petroleum Drilling Techniques, 2009, 37(2):26?31.