999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

用于VLC的LED半功率角優(yōu)化布局方法研究

2014-12-13 00:56:43李昉陳建平
中興通訊技術 2014年6期

李昉+陳建平

中圖分類號:TN929.1 ? ?文獻標志碼:A ? 文章編號:1009-6868 (2014) 06-0033-003

摘要:提出通過優(yōu)化發(fā)光二極管(LED)半功率角的布局來提高室內可見光通信系統(tǒng)性能的方法。4種典型的LED布局方式的仿真結果表明,該方法對于提高可見光通信系統(tǒng)的信噪比、降低信噪比的波動有明顯效果。對于均勻的LED布局方式,信噪比的波動從未優(yōu)化時的5.2 dB大幅下降到0.3 dB。該方法不需要調節(jié)LED的功率,更適合于工程運用。

關鍵詞:?可見光通信;發(fā)光二極管;優(yōu)化布局

Abstract:?This paper describes a method for optimizing the semi-angle at half power (SAHP) of a LED in order to improve indoor visible light communication. Four typical LED alignments are studied. The simulation results show that the proposed method increases SNR and reduces its fluctuation. Especially in the case of evenly distributed LED alignment, SNR fluctuation reduces significantly—from 5.2 dB to 0.3 dB. A distinguishing feature of this method is that the same power is used for each LED, which makes this method feasible for practical applications.

Keywords:? visible light communication; light-emitting diodes; alignment optimization

基于照明用發(fā)光二極管(LED)的可見光通信(VLC)具有高速、低成本、低能耗和無頻段限制等方面的優(yōu)勢,近年來引發(fā)了業(yè)界和學術界的關注[1-8]。

為滿足室內照明均勻性要求,通常采用大發(fā)射角的LED。但其多徑效應會影響VLC系統(tǒng)性能,包括信噪比和帶寬。為此,提出了多種優(yōu)化方案,包括對LED布局、功率和發(fā)射角度進行優(yōu)化。

文獻[9-10]采用遺傳算法來優(yōu)化LED的功率以達到均勻照明同時降低均方根時延擴展性能。

文獻[11]采用一種新的LED布局來減小信噪比的波動,仿真結果表明這種布局可以把信噪比的波動從14.5 dB減小到0.9 dB。

在文獻[12]中,結合使用寬、窄兩種發(fā)射角的LED以提高傳輸速率和均勻照明。

文獻[13]通過在LED前放置光波形擴束器來擴展LED的覆蓋區(qū)域,以均勻VLC接收端的功率分布。

文獻[14]提出一種優(yōu)化LED的半功率角(SAHP)的方法來提高可見光通信的性能。但是,由于其有限的優(yōu)化參數和區(qū)域,使得性能提升效果相當有限。

在本文中,我們針對提高VLC系統(tǒng)信噪比及其均勻性,提出一種優(yōu)化LED半功率角布局的方法,并給出基于非線性規(guī)劃的求解方法。仿真結果表明,對于4種典型的LED布局方式,這種優(yōu)化方法能有效提高VLC系統(tǒng)的信噪比、降低信噪比波動。在優(yōu)化過程中LED光源功率是保持不變的,因此該方法在工程應用中更容易實施(包括安裝和替換)。

1 室內VLC系統(tǒng)模型

正如文獻[11]中提到的,不同的LED光源布局會對室內VLC系統(tǒng)的性能產生影響。為了評價LED的半功率角(SAHP)參數對于信噪比及其均勻性的影響,本文采用了4種較為典型的LED光源布局。如圖1所示。為了便于比較,此4種布局所采用的LED個數都為144個,且每個光源功率都為1 W。對于布局(a)、布局(b)和布局(c)來說,每組分別有36、16和9個LED,相鄰LED間隔為0.05 m。對于布局(d)來說,LED平均分布在天花板上。其他的VLC系統(tǒng)參數列于表1中。

VLC系統(tǒng)探測器端接收到的信號的信噪比可以表示為[15]:

[SNR=SN=γ2P2rSignalσ2shot+σ2thermal+γ2P2rISI] ? ?(1)

其中[σ2shot]和[σ2thermal]分別是散彈噪聲和熱噪聲的功率,[γ]是探測器的響應度,[PrSignal]是接收到的信號功率,[PrISI]是接收到的碼間干擾功率,可分別表示為:

[PrSignal=0Ti=1LEDshi(t)?X(t)dt] ? ? (2)

[PrISI=T∞i=1LEDshi(t)?X(t)dt] ? ? (3)

其中hi(t)是第i個LED的脈沖響應(只考慮可視光線),X(t)表示的是在一個碼型間隔內傳輸的光脈沖。

我們采用文獻[11]的Q參數來研究整個工作平面上不同接收位置的信噪比分布,其定義為:

[QSNR=SNR2var(SNR)] ? ?(4)

其中,[SNR]和[var(SNR)]分別為信噪比的均值和方差。QSNR表示了信噪比及其分布情況,Q值越高,表明信噪比分布越均勻。

2 優(yōu)化過程和結果

2.1 優(yōu)化過程

我們提出的優(yōu)化方法,是針對每一個LED的SAHP參數進行優(yōu)化(稱為個體優(yōu)化),使系統(tǒng)的QSNR達到最優(yōu)。由于可用于優(yōu)化的參數數量眾多,從而可以獲得良好的優(yōu)化性能。作為對比,我們也采用了把所有LED取相同的SAHP,將其作為一個參數來進行整體優(yōu)化(WOP)的方法,以比較不同優(yōu)化方法的效果。該方法是對整個接收平面參數進行優(yōu)化,與文獻[14]中只針對特定區(qū)域內參數進行優(yōu)化相比具有更廣的優(yōu)化范圍,因此具有很好的優(yōu)化效果。

我們的優(yōu)化目標是要找到滿足一定信噪比條件下(比如信噪比不小于13.6 dB[15]),使QSNR達到最大值的SAHP參數,目標函數和相應的線性、非線性邊界條件可以表示為:

[max_QSNR(Φ12(i))s.tSNR>13.620°≤Φ12(i)≤80°]

其中,Φ1/2(i)表示的是待優(yōu)化的第i個LED的SAHP參數。

優(yōu)化過程可采用OptQuest非線性規(guī)劃多點啟動算法[16]進行計算,此算法能夠計算出滿足非線性邊界條件下的全局最優(yōu)化解。它由全局算法和本地算法兩部分。在全局算法部分,使用分散搜索算法[17]來產生可能用于本地非線性規(guī)劃求解器的起始點。在本地算法部分,對于滿足得分函數、Basin標準和約束條件的起始點,運行本地非線性規(guī)劃求解器。本地算法可以分為兩個階段,分別執(zhí)行n1和n2次疊代。在第一個階段,運行所有試驗點的判決函數,然后選擇那些具有最優(yōu)化Penalty函數的起始點,來運行本地求解器。在第二個階段,本地求解器從滿足距離過濾函數和價值過濾函數的其余點的子集部分開始運行,以保證本地求解器只從占百分比很小的試驗點中開始運行并且仍然有比較高的找到全局最優(yōu)解的可能性[16]。

2.2 優(yōu)化結果

我們計算了不同光源分布下,個體優(yōu)化(IOP)、整體優(yōu)化(WOP)和未優(yōu)化(NOP)的信噪比及其分布。對于NOP,每個LED的SAHP設定為常用的寬角60°。下面為所計算結果。

對于圖1(a)所示的4組布局,IOP與WOP的優(yōu)化結果比較相近,相對于NOP來說都有較大的改善,如圖2所示。因此,對于這種布局,采用何種優(yōu)化方式可根據實際情況而定。由于WOP只有一個待定的參數,優(yōu)化過程更為簡單。

對于9組和16布局,情況與4組布局相似,信噪比的均值從NOP時的13.6 dB和WOP時的20.6 dB,提高到IOP時的21.6 dB。具體的結果列于表2中。

對于平均布局,IOP明顯優(yōu)于WOP,如圖3所示。IOP優(yōu)化下的信噪比波動對于所有接收位置來說只有0.3 dB,相應的QSNR高達148,約為NOP和WOP的10倍。IOP情況下SAHP參數的位置分布如圖4所示,其中同一SHAP參數用相同的顏色來表示??梢钥闯?,只有少量SAHP值為60°,大多數SHAP參數取值為在20°至35°范圍內。因為比較小的SAHP值可以讓LED的光線匯聚在一個比較小的范圍內,這樣就可以減小碼間干擾所帶來的影響,進而提高信噪比。

表2列出了有關信噪比的優(yōu)化值。這些結果顯示,用最大化QSNR參數來優(yōu)化LED布局的方法是有效的。優(yōu)化使得信噪比及其均勻性都得到了提高。通信分析最優(yōu)化結果,可以發(fā)現小SAHP的LED可以提供更均勻的通信性能。采用何種優(yōu)化方式取決于LED的布局。對于均勻布局,應采用IOP優(yōu)化方法。對于其他布局(尤其是組數較少時),IOP與WOP均可采用,后者的優(yōu)化過程相對簡單。本文提出的優(yōu)化方法,每個LED功率是保持不變的,這一特點很適合于工程應用。無論是在安裝還是以后替換時,只需要替換具有相同SAHP參數的LED即可,與那些需要改變光源功率的方法相比較更容易操作。

3 結束語

本文提出了一種優(yōu)化LED半功率角布局的方法,此方法能有效提高室內VLC系統(tǒng)的信噪比并且降低信噪比的波動。對于4種典型LED布局方式,采用此優(yōu)化方法后,信噪比與其分布特性均得到提高。另外,此方法不需要調節(jié)LED的功率,因此更適合于工程應用。

參考文獻

[1] LEE Y U, KAVEHRAD M. Two hybrid positioning system design techniques with lighting LEDs and ad-hoc wireless network [J]. Consumer Electronics, IEEE Transactions , 2012,58(2):1176-1184.

[2] JANG H J, CHOI J H, GHASSEMLOOY Z, LEE C G. PWM-based PPM format for dimming control in visible light communication system [C]//Proceedings of the Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012 8th International Symposium on, IEEE, 2012:1-5.

[3] STEFAN I, ELGALA H, MESLEH R, O'BRIEN D, HAAS H. Optical wireless OFDM system on FPGA: Study of LED nonlinearity effects [C]//Proceedings of the Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, IEEE, 2011:1-5.

[4] AZHAR A H, TRAN T A, O'BRIEN D. Demonstration of high-speed data transmission using MIMO-OFDM visible light communications [C]//Proceedings of the GLOBECOM Workshops (GC Wkshps), 2010 IEEE, IEEE, 2010:1052-1056.

[5] LE M H, O'BRIEN D, FAULKNER G, ZENG L,

LEE K, JUNG D, OH Y. High-speed visible light communications using multiple-resonant equalization [J]. Photonics Technology Letters, IEEE 2008,20(3):1243-1245.

[6] KOTTKE C, HILT J, HABEL K, VUCIC J, LANGER K D. 1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]//Proceedings of the European Conference and Exhibition on Optical Communication, Optical Society of America, 2012.

[7] COSSU G, KHALID A, CHOUDHURY P, CORSINI R, CIARAMELLA E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED [J]. Opt. Express20 2012,20(26):B501-B506.

[8] WU F M, LIN C T, WEI C C, CHEN C W, CHEN Z Y, HUANG K. 3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation[C]//Proceedings of the Optical Fiber Communication Conference, Optical Society of America, 2013.

[9] DING J, HUANG Z, JI Y. Evolutionary algorithm based power coverage optimization for visible light communications [J]. Communications Letters, IEEE 2012,16(6):439-441.

[10] HIGGINS M D, GREEN R J, LEESON M S, HINES E L. Multi-user indoor optical wireless communication system channel control using a genetic algorithm [J]. IET communications 2011,25(5):937-944.

[11] WANG Z, YU C, ZHONG W D, CHEN J, CHEN W. Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems [J]. Optics Express 2012,20(4):4564-4573.

[12] BOROGOVAC T, RAHAIM M, CARRUTHERS J B. Spotlighting for visible light communications and illumination[C]//Proceedings of the GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010:1077-1081.

[13] WU D, GHASSEMLOOY Z, LEMINH H, RAJBHANDARI S, KAVIAN Y. Power distribution and Q-factor analysis of diffuse cellular indoor visible light communication systems[C]//Proceedings of the Networks and Optical Communications (NOC), 2011 16th European Conference on, IEEE, 2011: 28-31.

[14] WU D, GHASSEMLOOY Z, LE M H, RAJBHANDARI S, KHALIGHI M A. Optimization of Lambertian order for indoor non-directed optical wireless communication[C]//Proceedings of the Communications in China Workshops (ICCC), 2012 1st IEEE International Conference on, IEEE, 2012:43-48.

[15] KOMINE T, NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights [J]. Consumer Electronics, IEEE Transactions on 2004,50(2):100-107.

[16] UGRAY Z, LASDON L, PLUMMER J, GLOVER F, KELLY J, MARTI R. Scatter search and local NLP solvers: A multistart framework for global optimization [J]. INFORMS Journal on Computing, 2007,19(3):328-340.

[17] GLOVER F. A template for scatter search and path relinking[C]//Proceedings of the Artificial evolution, Springer, 1998:1-51.

LEE K, JUNG D, OH Y. High-speed visible light communications using multiple-resonant equalization [J]. Photonics Technology Letters, IEEE 2008,20(3):1243-1245.

[6] KOTTKE C, HILT J, HABEL K, VUCIC J, LANGER K D. 1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]//Proceedings of the European Conference and Exhibition on Optical Communication, Optical Society of America, 2012.

[7] COSSU G, KHALID A, CHOUDHURY P, CORSINI R, CIARAMELLA E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED [J]. Opt. Express20 2012,20(26):B501-B506.

[8] WU F M, LIN C T, WEI C C, CHEN C W, CHEN Z Y, HUANG K. 3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation[C]//Proceedings of the Optical Fiber Communication Conference, Optical Society of America, 2013.

[9] DING J, HUANG Z, JI Y. Evolutionary algorithm based power coverage optimization for visible light communications [J]. Communications Letters, IEEE 2012,16(6):439-441.

[10] HIGGINS M D, GREEN R J, LEESON M S, HINES E L. Multi-user indoor optical wireless communication system channel control using a genetic algorithm [J]. IET communications 2011,25(5):937-944.

[11] WANG Z, YU C, ZHONG W D, CHEN J, CHEN W. Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems [J]. Optics Express 2012,20(4):4564-4573.

[12] BOROGOVAC T, RAHAIM M, CARRUTHERS J B. Spotlighting for visible light communications and illumination[C]//Proceedings of the GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010:1077-1081.

[13] WU D, GHASSEMLOOY Z, LEMINH H, RAJBHANDARI S, KAVIAN Y. Power distribution and Q-factor analysis of diffuse cellular indoor visible light communication systems[C]//Proceedings of the Networks and Optical Communications (NOC), 2011 16th European Conference on, IEEE, 2011: 28-31.

[14] WU D, GHASSEMLOOY Z, LE M H, RAJBHANDARI S, KHALIGHI M A. Optimization of Lambertian order for indoor non-directed optical wireless communication[C]//Proceedings of the Communications in China Workshops (ICCC), 2012 1st IEEE International Conference on, IEEE, 2012:43-48.

[15] KOMINE T, NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights [J]. Consumer Electronics, IEEE Transactions on 2004,50(2):100-107.

[16] UGRAY Z, LASDON L, PLUMMER J, GLOVER F, KELLY J, MARTI R. Scatter search and local NLP solvers: A multistart framework for global optimization [J]. INFORMS Journal on Computing, 2007,19(3):328-340.

[17] GLOVER F. A template for scatter search and path relinking[C]//Proceedings of the Artificial evolution, Springer, 1998:1-51.

LEE K, JUNG D, OH Y. High-speed visible light communications using multiple-resonant equalization [J]. Photonics Technology Letters, IEEE 2008,20(3):1243-1245.

[6] KOTTKE C, HILT J, HABEL K, VUCIC J, LANGER K D. 1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]//Proceedings of the European Conference and Exhibition on Optical Communication, Optical Society of America, 2012.

[7] COSSU G, KHALID A, CHOUDHURY P, CORSINI R, CIARAMELLA E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED [J]. Opt. Express20 2012,20(26):B501-B506.

[8] WU F M, LIN C T, WEI C C, CHEN C W, CHEN Z Y, HUANG K. 3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation[C]//Proceedings of the Optical Fiber Communication Conference, Optical Society of America, 2013.

[9] DING J, HUANG Z, JI Y. Evolutionary algorithm based power coverage optimization for visible light communications [J]. Communications Letters, IEEE 2012,16(6):439-441.

[10] HIGGINS M D, GREEN R J, LEESON M S, HINES E L. Multi-user indoor optical wireless communication system channel control using a genetic algorithm [J]. IET communications 2011,25(5):937-944.

[11] WANG Z, YU C, ZHONG W D, CHEN J, CHEN W. Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems [J]. Optics Express 2012,20(4):4564-4573.

[12] BOROGOVAC T, RAHAIM M, CARRUTHERS J B. Spotlighting for visible light communications and illumination[C]//Proceedings of the GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010:1077-1081.

[13] WU D, GHASSEMLOOY Z, LEMINH H, RAJBHANDARI S, KAVIAN Y. Power distribution and Q-factor analysis of diffuse cellular indoor visible light communication systems[C]//Proceedings of the Networks and Optical Communications (NOC), 2011 16th European Conference on, IEEE, 2011: 28-31.

[14] WU D, GHASSEMLOOY Z, LE M H, RAJBHANDARI S, KHALIGHI M A. Optimization of Lambertian order for indoor non-directed optical wireless communication[C]//Proceedings of the Communications in China Workshops (ICCC), 2012 1st IEEE International Conference on, IEEE, 2012:43-48.

[15] KOMINE T, NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights [J]. Consumer Electronics, IEEE Transactions on 2004,50(2):100-107.

[16] UGRAY Z, LASDON L, PLUMMER J, GLOVER F, KELLY J, MARTI R. Scatter search and local NLP solvers: A multistart framework for global optimization [J]. INFORMS Journal on Computing, 2007,19(3):328-340.

[17] GLOVER F. A template for scatter search and path relinking[C]//Proceedings of the Artificial evolution, Springer, 1998:1-51.

主站蜘蛛池模板: 久久国产热| 妇女自拍偷自拍亚洲精品| 色综合a怡红院怡红院首页| 亚洲午夜福利在线| 啪啪永久免费av| 亚洲福利片无码最新在线播放| 制服丝袜亚洲| 日本道综合一本久久久88| jizz亚洲高清在线观看| 久久美女精品| 9cao视频精品| 黄色网站在线观看无码| 无套av在线| 18禁黄无遮挡免费动漫网站| 婷婷综合缴情亚洲五月伊| 97精品国产高清久久久久蜜芽| 亚洲区视频在线观看| 亚洲成A人V欧美综合| 欧美a在线视频| 2020精品极品国产色在线观看 | 欧美成人日韩| 国产极品粉嫩小泬免费看| 免费网站成人亚洲| 中文国产成人久久精品小说| 国产在线欧美| 狠狠色婷婷丁香综合久久韩国| 亚洲人成人无码www| 国产成人精品综合| 2018日日摸夜夜添狠狠躁| 国产91色在线| 欧美日韩午夜视频在线观看| 亚洲天堂首页| 亚洲国产av无码综合原创国产| 亚洲欧洲日韩综合色天使| 国产精品所毛片视频| 国产精品免费电影| 超清无码一区二区三区| 国产成人久视频免费| 久久中文无码精品| 国产地址二永久伊甸园| 97久久免费视频| 中文无码精品A∨在线观看不卡 | 综合色婷婷| 无码中文字幕乱码免费2| 丰满的熟女一区二区三区l| 中文国产成人久久精品小说| 无码'专区第一页| 美女被狂躁www在线观看| 国产原创自拍不卡第一页| 国产经典三级在线| 69视频国产| 国产成人高精品免费视频| 亚洲性视频网站| 日韩精品无码免费专网站| 亚洲天堂久久新| 免费不卡在线观看av| 国产视频入口| 欧美一区二区三区欧美日韩亚洲 | 亚洲天堂伊人| 青青极品在线| 国产成人在线小视频| 欧洲日本亚洲中文字幕| 免费a级毛片18以上观看精品| 18禁色诱爆乳网站| 国产福利不卡视频| 亚洲第一区在线| 91亚洲精选| 欧美va亚洲va香蕉在线| 精品欧美视频| 91九色视频网| 2021国产在线视频| 亚洲高清资源| 91九色视频网| 亚洲人成在线精品| 99在线观看免费视频| 日韩精品欧美国产在线| 2024av在线无码中文最新| 精品一区二区三区波多野结衣| 国产成人免费视频精品一区二区| 有专无码视频| 亚洲天堂在线视频| 在线免费无码视频|