馮晨光
摘要:當前,企業經常使用內含報酬率法進行投資決策,但該方法存在很多不足,甚至在很多情況下會得出與凈現值法截然相反的結論,誤導投資決策者。本文將對內含報酬率法的缺陷進行分析,引起廣大投資決策者的關注,并促使其在今后的決策分析中使用更加合理的技術方法。
關鍵詞:內含報酬率法;凈現值法;資本機會成本
中圖分類號:F230.9 文獻標識碼:A
文章編號:1005-913X(2014)11-0130-01
內含報酬率法是指在項目投資決策過程中,如果項目的資本機會成本低于內含報酬率,項目的凈現值為正,在不考慮其他因素的情況下,企業就應該接受該項目。許多企業都將內含報酬率法作為投資項目的評判標準,但在有些情況下,內含報酬率法存在難以克服的缺陷。
一、不符合股東財富最大化的財務管理目標
在僅有一個投資項目的情況下,內含報酬率法進行決策符合股東財富最大化的目標。但在多個方案的情況下,使用內含報酬率法往往會違反股東財富最大化的目標。舉例說明,假定一個企業同時有三個項目可供選擇,項目A和項目B相互排斥,也就是不能同時選擇項目A和項目B,項目C獨立于上述兩個項目。各項目及項目組合的現金流量見表1;經計算,以10%的資本機會成本進行貼現的凈現值和各項目的內含報酬率見表2。
如果企業采用內含報酬率法對項目A和項目B進行選擇,企業最終會選擇項目A;如果企業考慮各種項目的組合時,用內含報酬率法,企業會選擇項目B和項目C的組合,因為該組合的內含報酬率高于項目A和項目C的組合。從股東財富最大化的角度看,由于項目A的凈現值大于項目B,在項目A和項目B之間進行選擇與用內含報酬率法的結果相同;但考慮項目組合時,項目A和項目C組合的凈現值大于項目B和項目C,而內含報酬率法則會選擇報酬率更高的項目B和項目C的組合。用凈現值進行的項目組合的判斷更為合適,因為它符合股東財富最大化的財務管理目標。
出現上述矛盾是因為,凈現值為零的內含報酬率是方程
=0
的解,其中,N為項目存續年限,為第j年的現金凈流量,內含報酬率為i。項目A與項目C組合的內含報酬率顯然不會等于與之和,由此我們就不能簡單的認為因為項目A優于項目B,用內含報酬率法,項目A和項目C的組合就必定會優于項目B和項目C的組合,這是由內含報酬率計算公式的數學特性所形成的內在必然性。但用凈現值法就可以這樣簡單的進行判斷。
如果考慮資本約束的條件,對于互斥的兩個項目,如果資金總量不足,投資效益再好的項目也無法執行;如果資金總量充足,互斥項目也有可能會出現內含報酬率高的項目凈現值低的情況,這時企業也應當以凈現值為基礎進行判斷。
二、特殊情況下可以得到多個內含報酬率或沒有內含報酬率
假定項目A現金流量見表3:
內含報酬率可以通過以下方程求解:
0=++
i=25%或400%,出現了兩個根。如果項目存續期限不只是兩年,那么,根據笛卡爾的“符號法則”,多項式根的個數與其符號的變化次數相等。這會使企業求解方程時得到多個解。我們需要根據實際的情況對這些解進行排除,以得到合理或者正確的解。
還有一種情況就是內含報酬率根本不存在。假定項目A的現金流量見表4:
很顯然,使用任何貼現率,上述項目的凈現值都會大于零。
三、資本機會成本的確定存在較多的障礙
在使用內含報酬率法時,企業比較的對象是投資項目的內含報酬率和資本的機會成本。在確定資本的機會成本時,將會存在較多的麻煩。日常經營中,企業可能會存在多個投資機會,這時資本的機會成本也將有多個。按照內含報酬率法,企業需要將這些資本機會成本與項目的內含報酬率進行比較。企業將內含報酬率與這些資本機會成本的最大值進行比較是不合適的。企業需要將這些機會成本進行復雜的計算得出加權平均的資本機會成本,這當然也需要企業做出更多的無法驗證的假設,增加了計算的難度。如果企業認為項目應當與某種交易證券的期望收益率相比較,這種交易證券的風險應當與項目相當,且現金流的時間結構與項目也需完全相同,這樣的交易證券選擇起來也非常的麻煩。
綜合上述分析,我們可以得出,僅一個項目的投資決策,并且該項目存在內含報酬率的情況下,可以使用內含報酬率法進行判斷,但前提是要簡化對資本機會成本選擇的考慮。多個項目的投資決策,我們應當使用凈現值法進行判斷選擇。總之,企業應當盡可能的使用凈現值法進行投資決策的判斷。
參考文獻:
[1] 理查德·布雷利.公司財務原理[M].北京:機械工業出版社,2011:61~70.
[2] 陶亞文,余 波.貼現原理的再認識[J].會計研究,1998(12):29~34.
[3] 克萊德·斯蒂克尼.財務會計[M].北京:機械工業出版社,2011:72~87.
[責任編輯:方 曉]
摘要:當前,企業經常使用內含報酬率法進行投資決策,但該方法存在很多不足,甚至在很多情況下會得出與凈現值法截然相反的結論,誤導投資決策者。本文將對內含報酬率法的缺陷進行分析,引起廣大投資決策者的關注,并促使其在今后的決策分析中使用更加合理的技術方法。
關鍵詞:內含報酬率法;凈現值法;資本機會成本
中圖分類號:F230.9 文獻標識碼:A
文章編號:1005-913X(2014)11-0130-01
內含報酬率法是指在項目投資決策過程中,如果項目的資本機會成本低于內含報酬率,項目的凈現值為正,在不考慮其他因素的情況下,企業就應該接受該項目。許多企業都將內含報酬率法作為投資項目的評判標準,但在有些情況下,內含報酬率法存在難以克服的缺陷。
一、不符合股東財富最大化的財務管理目標
在僅有一個投資項目的情況下,內含報酬率法進行決策符合股東財富最大化的目標。但在多個方案的情況下,使用內含報酬率法往往會違反股東財富最大化的目標。舉例說明,假定一個企業同時有三個項目可供選擇,項目A和項目B相互排斥,也就是不能同時選擇項目A和項目B,項目C獨立于上述兩個項目。各項目及項目組合的現金流量見表1;經計算,以10%的資本機會成本進行貼現的凈現值和各項目的內含報酬率見表2。
如果企業采用內含報酬率法對項目A和項目B進行選擇,企業最終會選擇項目A;如果企業考慮各種項目的組合時,用內含報酬率法,企業會選擇項目B和項目C的組合,因為該組合的內含報酬率高于項目A和項目C的組合。從股東財富最大化的角度看,由于項目A的凈現值大于項目B,在項目A和項目B之間進行選擇與用內含報酬率法的結果相同;但考慮項目組合時,項目A和項目C組合的凈現值大于項目B和項目C,而內含報酬率法則會選擇報酬率更高的項目B和項目C的組合。用凈現值進行的項目組合的判斷更為合適,因為它符合股東財富最大化的財務管理目標。
出現上述矛盾是因為,凈現值為零的內含報酬率是方程
=0
的解,其中,N為項目存續年限,為第j年的現金凈流量,內含報酬率為i。項目A與項目C組合的內含報酬率顯然不會等于與之和,由此我們就不能簡單的認為因為項目A優于項目B,用內含報酬率法,項目A和項目C的組合就必定會優于項目B和項目C的組合,這是由內含報酬率計算公式的數學特性所形成的內在必然性。但用凈現值法就可以這樣簡單的進行判斷。
如果考慮資本約束的條件,對于互斥的兩個項目,如果資金總量不足,投資效益再好的項目也無法執行;如果資金總量充足,互斥項目也有可能會出現內含報酬率高的項目凈現值低的情況,這時企業也應當以凈現值為基礎進行判斷。
二、特殊情況下可以得到多個內含報酬率或沒有內含報酬率
假定項目A現金流量見表3:
內含報酬率可以通過以下方程求解:
0=++
i=25%或400%,出現了兩個根。如果項目存續期限不只是兩年,那么,根據笛卡爾的“符號法則”,多項式根的個數與其符號的變化次數相等。這會使企業求解方程時得到多個解。我們需要根據實際的情況對這些解進行排除,以得到合理或者正確的解。
還有一種情況就是內含報酬率根本不存在。假定項目A的現金流量見表4:
很顯然,使用任何貼現率,上述項目的凈現值都會大于零。
三、資本機會成本的確定存在較多的障礙
在使用內含報酬率法時,企業比較的對象是投資項目的內含報酬率和資本的機會成本。在確定資本的機會成本時,將會存在較多的麻煩。日常經營中,企業可能會存在多個投資機會,這時資本的機會成本也將有多個。按照內含報酬率法,企業需要將這些資本機會成本與項目的內含報酬率進行比較。企業將內含報酬率與這些資本機會成本的最大值進行比較是不合適的。企業需要將這些機會成本進行復雜的計算得出加權平均的資本機會成本,這當然也需要企業做出更多的無法驗證的假設,增加了計算的難度。如果企業認為項目應當與某種交易證券的期望收益率相比較,這種交易證券的風險應當與項目相當,且現金流的時間結構與項目也需完全相同,這樣的交易證券選擇起來也非常的麻煩。
綜合上述分析,我們可以得出,僅一個項目的投資決策,并且該項目存在內含報酬率的情況下,可以使用內含報酬率法進行判斷,但前提是要簡化對資本機會成本選擇的考慮。多個項目的投資決策,我們應當使用凈現值法進行判斷選擇。總之,企業應當盡可能的使用凈現值法進行投資決策的判斷。
參考文獻:
[1] 理查德·布雷利.公司財務原理[M].北京:機械工業出版社,2011:61~70.
[2] 陶亞文,余 波.貼現原理的再認識[J].會計研究,1998(12):29~34.
[3] 克萊德·斯蒂克尼.財務會計[M].北京:機械工業出版社,2011:72~87.
[責任編輯:方 曉]
摘要:當前,企業經常使用內含報酬率法進行投資決策,但該方法存在很多不足,甚至在很多情況下會得出與凈現值法截然相反的結論,誤導投資決策者。本文將對內含報酬率法的缺陷進行分析,引起廣大投資決策者的關注,并促使其在今后的決策分析中使用更加合理的技術方法。
關鍵詞:內含報酬率法;凈現值法;資本機會成本
中圖分類號:F230.9 文獻標識碼:A
文章編號:1005-913X(2014)11-0130-01
內含報酬率法是指在項目投資決策過程中,如果項目的資本機會成本低于內含報酬率,項目的凈現值為正,在不考慮其他因素的情況下,企業就應該接受該項目。許多企業都將內含報酬率法作為投資項目的評判標準,但在有些情況下,內含報酬率法存在難以克服的缺陷。
一、不符合股東財富最大化的財務管理目標
在僅有一個投資項目的情況下,內含報酬率法進行決策符合股東財富最大化的目標。但在多個方案的情況下,使用內含報酬率法往往會違反股東財富最大化的目標。舉例說明,假定一個企業同時有三個項目可供選擇,項目A和項目B相互排斥,也就是不能同時選擇項目A和項目B,項目C獨立于上述兩個項目。各項目及項目組合的現金流量見表1;經計算,以10%的資本機會成本進行貼現的凈現值和各項目的內含報酬率見表2。
如果企業采用內含報酬率法對項目A和項目B進行選擇,企業最終會選擇項目A;如果企業考慮各種項目的組合時,用內含報酬率法,企業會選擇項目B和項目C的組合,因為該組合的內含報酬率高于項目A和項目C的組合。從股東財富最大化的角度看,由于項目A的凈現值大于項目B,在項目A和項目B之間進行選擇與用內含報酬率法的結果相同;但考慮項目組合時,項目A和項目C組合的凈現值大于項目B和項目C,而內含報酬率法則會選擇報酬率更高的項目B和項目C的組合。用凈現值進行的項目組合的判斷更為合適,因為它符合股東財富最大化的財務管理目標。
出現上述矛盾是因為,凈現值為零的內含報酬率是方程
=0
的解,其中,N為項目存續年限,為第j年的現金凈流量,內含報酬率為i。項目A與項目C組合的內含報酬率顯然不會等于與之和,由此我們就不能簡單的認為因為項目A優于項目B,用內含報酬率法,項目A和項目C的組合就必定會優于項目B和項目C的組合,這是由內含報酬率計算公式的數學特性所形成的內在必然性。但用凈現值法就可以這樣簡單的進行判斷。
如果考慮資本約束的條件,對于互斥的兩個項目,如果資金總量不足,投資效益再好的項目也無法執行;如果資金總量充足,互斥項目也有可能會出現內含報酬率高的項目凈現值低的情況,這時企業也應當以凈現值為基礎進行判斷。
二、特殊情況下可以得到多個內含報酬率或沒有內含報酬率
假定項目A現金流量見表3:
內含報酬率可以通過以下方程求解:
0=++
i=25%或400%,出現了兩個根。如果項目存續期限不只是兩年,那么,根據笛卡爾的“符號法則”,多項式根的個數與其符號的變化次數相等。這會使企業求解方程時得到多個解。我們需要根據實際的情況對這些解進行排除,以得到合理或者正確的解。
還有一種情況就是內含報酬率根本不存在。假定項目A的現金流量見表4:
很顯然,使用任何貼現率,上述項目的凈現值都會大于零。
三、資本機會成本的確定存在較多的障礙
在使用內含報酬率法時,企業比較的對象是投資項目的內含報酬率和資本的機會成本。在確定資本的機會成本時,將會存在較多的麻煩。日常經營中,企業可能會存在多個投資機會,這時資本的機會成本也將有多個。按照內含報酬率法,企業需要將這些資本機會成本與項目的內含報酬率進行比較。企業將內含報酬率與這些資本機會成本的最大值進行比較是不合適的。企業需要將這些機會成本進行復雜的計算得出加權平均的資本機會成本,這當然也需要企業做出更多的無法驗證的假設,增加了計算的難度。如果企業認為項目應當與某種交易證券的期望收益率相比較,這種交易證券的風險應當與項目相當,且現金流的時間結構與項目也需完全相同,這樣的交易證券選擇起來也非常的麻煩。
綜合上述分析,我們可以得出,僅一個項目的投資決策,并且該項目存在內含報酬率的情況下,可以使用內含報酬率法進行判斷,但前提是要簡化對資本機會成本選擇的考慮。多個項目的投資決策,我們應當使用凈現值法進行判斷選擇。總之,企業應當盡可能的使用凈現值法進行投資決策的判斷。
參考文獻:
[1] 理查德·布雷利.公司財務原理[M].北京:機械工業出版社,2011:61~70.
[2] 陶亞文,余 波.貼現原理的再認識[J].會計研究,1998(12):29~34.
[3] 克萊德·斯蒂克尼.財務會計[M].北京:機械工業出版社,2011:72~87.
[責任編輯:方 曉]