許巖等
[摘要] 目的 觀察大鼠黑質氧化損傷后內源性硫化氫(hydrogen sulfide,H2S)的變化及其作用。 方法 將SD雄性大鼠單側黑質內微量注射6-羥基多巴胺(6-Hydroxydopamine,6-OHDA)作為黑質氧化損傷模型;H2S供體硫氫化鈉(sodium hydrosulfide,NaHS)在6-OHDA損傷前連續腹腔注射3周作為預處理;實驗分為對照組、6-OHDA損傷后7 d(D7組)、11 d(D11組)、17 d組(D17組)、NaHS預處理組(NaHS+6-OHDA處理),每組各8只;采用亞甲基藍分光光度計法檢測黑質胱硫醚-β-合酶(cystathionine-β-synthase,CBS)活性及H2S的含量;免疫組織化學法檢測黑質酪氨酸羥化酶(tyrosine hydroxylase,TH)陽性細胞數;紫外分光光度法測定黑質谷胱甘肽過氧化物酶(glutathione peroxidase,GSH-Px)活性和丙二醛(malondialdehyde,MDA)水平。 結果 與對照組比較,6-OHDA損傷后7、11、17 d黑質CBS酶活性分別下降為[(96.21±8.40)%,P > 0.05],[(86.48±9.85)%,P < 0.05]和[(75.16±7.45)%,P < 0.01];內源性H2S含量分別減少為[(90.12±10.03)%,P < 0.05],[(82.58±9.52)%,P < 0.01]和[(78.16±11.55)%,P < 0.01]。TH陽性細胞與對照組比較,在6-OHDA損傷后7 d即下降為[(84.32±6.06)%,P < 0.05],同時伴隨黑質GSH-Px活性降低及MDA含量升高,差異有統計學意義(P < 0.05)。但早期給予NaHS預處理補充H2S之后,與單純6-OHDA損傷后7 d比較,TH陽性細胞則增加為[(96.15±5.03)%,P < 0.05],且黑質GSH-Px的活性升高,MDA的含量降低,差異有統計學意義(P < 0.05)。 結論 6-OHDA氧化損傷導致大鼠黑質CBS酶活性及H2S含量下降,外源性H2S預處理可早期發揮抗黑質氧化損傷的神經元保護作用,這可能與其增加GSH-Px活性及減少MDA含量有關。
[關鍵詞] 硫化氫;胱硫醚-β-合酶;帕金森病;氧化應激;神經保護
[中圖分類號] R742.5 [文獻標識碼] A [文章編號] 1673-7210(2014)12(c)-0016-05
Changes and roles of endogenous hydrogen sulfide in the substantial nigra oxidative damage of rats
XU Yan1 MA Na2 LIU Bo3 WANG Jingying1 LIAO Wenhui3 WANG Sheng2 WANG Jinquan2 MENG Jinlan2
1.The Third Department of Surgery, Southern Medical University TCM-Integrated Hospital, Guangdong Province, Guangzhou 510315, China; 2.Department of Physiology, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou 510006, China; 3.Department of Pharmaceutical, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou 510080, China
[Abstract] Objective To observe the changes and roles of endogenous hydrogen sulfide in the substantia nigra oxidative damage of rats. Methods 6-hydroxydop- amine (6-OHDA) was microinjected in the unilateral substantia nigra of SD rats as the substantia nigra oxidative damage model; H2S donor, sodium hydrosulfide (NaHS) was injected intraperitoneally for three consecutive weeks as a pretreatment before 6-OHDA injury. The experiment were divided into the control group , 7 days (D7) group, 11 days (D11) group, 17 days (D17) group after 6-OHDA injury and NaHS preconditioning group (deafed with NaHS + 6-OHDA); with 8 rats in each group. Cystathionine-β-synthase (CBS) activity and H2S production in substantia nigra were detected by methylene blue spectrophot-ometric method. Immunohistochemistry was used to detect tyrosine hydroxylase (tyrosine hydroxylase, TH) positive cells of the substantia nigra; Glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) level of the substantia nigra were measured by UV spectrophotometry. Results Compared with the control group, percentage of CBS activity was decreased respectively to[(96.21±8.40)%, P > 0.05], [(86.48±9.85)%, P < 0.05 ] and [(75.16±7.45)%, P < 0.01] for 7, 11 and 17 d after 6-OHDA injury; Percentage of endogenous H2S content decreased respectively to [(90.12±10.03)%, P < 0.05],[(82.58±9.52)%, P < 0.01] and [(78.16±11.55)%, P < 0.01] also. Compared with control group, percentage of TH positive cells was reduced to [(84.32±6.06)%, P < 0.05] at 7 d after 6-OHDA damage, accompanied by GSH-Px activity reducing and MDA content increasing, the difference was statistically significant (P < 0.05). But compared with 7 d after 6-OHDA injury, early supplementary H2S through NaHS pretreatment, percentage of TH positive cells were increased to [(96.15±5.03)%, P < 0.05], and GSH-Px activity was increased ,the content of MDA was decreased, the difference was statistically significant (P <0.05). Conclusion Substantia nigra oxidative damage after 6-OHDA injure leads to CBS activity and endogenous H2S content decreased, pretreatment with exogenous H2S early exert neurons protective effect of anti- oxidative damage in substantia nigra, which may be related to GSH-Px activity increasing and MDA content decreasing.
[Key words] Hydrogen sulfide; Cystathionine-β-synthase; Parkinson's disease; Oxidative stress; Neuroprotection
硫化氫(hydrogen sulfide,H2S)目前被公認為是除NO和CO之外另一種新的氣體信號分子。體內半胱氨酸等含硫氨基酸在5'-磷酸吡哆醛依賴酶胱硫醚-β-合酶(cystathi-onine-β-synthase,CBS)和胱硫醚-γ-裂解酶(cystathionine-γ-lyase,CSE)等的催化作用下生成內源性H2S。在中樞神經系統中CBS被認為是腦內源性H2S生成的主要酶,當H2S生成濃度過高或過低時與神經系統疾病如老年癡呆(Alzheimer's disease,AD)[1]、腦卒中[2]等的發生密切相關。Hu等[3]在6-羥基多巴胺(6-Hydroxydopamine,6-OHDA)制備的帕金森病(Parkinson's disease,PD)模型鼠中檢測到黑質內源性H2S含量減少,酪氨酸羥化酶(tyrosine hydroxylase,TH)陽性細胞數量及其蛋白表達明顯降低,提示內源性H2S參與了PD的病理過程。但是,在PD進展過程中內源性H2S生成的動態變化尚未明確。
PD是一種以黑質紋狀體多巴胺神經元進行性損失為特征的神經退行性疾病[4],其發病機制目前仍未完全清楚,但是氧化應激在PD的發生中發揮了重要的作用[5]。研究已證明H2S可通過抗氧化應激[6]、抗炎[7]及抗凋亡[8]等發揮神經元保護作用,對神經退行性疾病有潛在的治療價值。
6-OHDA主要通過誘導氧化應激發揮DA神經元特異性的毒性作用[9],是公認制備PD動物模型的神經毒性藥物[10]。
本研究將應用6-OHDA誘導的黑質氧化損傷大鼠模型,研究在黑質損傷早期及進展過程中內源性H2S生成相關指標的動態變化;并早期給予外源性H2S預處理,觀察其抗氧化應激的PD預防作用。
1 材料與方法
1.1 動物分組及給藥
成年雄性Sprague-Dawley鼠40只,體重230~280 g,室溫(20±2)℃,自由進食、飲水。動物于實驗前適應實驗室環境1周。隨機分為以下5組,每組各8只:①6-OHDA損傷后7 d組(D7組):利用腦立體定位儀在右側中腦黑質內微量注入4 μL終濃度為2 μg/μL(用0.2 mg/mL維生素C注射液稀釋)的6-OHDA(黑質立體定位坐標:前囟后5.3 mm,矢狀縫向右旁開2.0 mm,自腦膜下深度為7.6 mm),該組動物在6-OHDA注射后7 d處死取樣;②6-OHDA損傷后11 d組(D11組):方法同①,該組動物在6-OHDA注射后11 d處死取樣;③6-OHDA損傷后17天組(D17組):方法同①,該組動物在6-OHDA注射后17 d處死取樣;④對照組:利用腦立體定位儀在右側黑質內注入4 μL 0.2 mg/mL維生素C注射液;⑤NaHS預處理組:在6-OHDA損傷前3周連續每天腹腔注射NaHS[5.6 mg/(kg·d)],之后再注射6-OHDA,7 d后處死動物取樣。
1.2 胱硫醚-β-合酶(CBS)活性的檢測
將組織勻漿加入預先配制好的反應體系[100 mmol/L磷酸鉀緩沖液(pH=7.4)、10 mmol/L左旋-半胱氨酸、2 mmol/L 5'-磷酸吡哆醛]中。使組織勻漿占反應體系的10%,移至反應瓶,吸取1%醋酸鋅0.5 mL吸收液加入中央室。轉移錐形瓶至37℃水浴搖床中搖蕩反應90 min后,在反應體系中加入50%三氯醋酸0.5 mL終止反應后繼續在37℃水浴反應60 min。將中央室的內容物轉移后加入7.2 mol/L含鹽酸對苯二胺的鹽酸溶液0.5 mL,加入1.2 mol/L含三氯化鐵的鹽酸溶液0.4 mL,于20 min后測670 nm波長處的吸光度值(OD值)。實驗組CBS酶活性以實驗組OD值/對照組OD值×100%表示。
1.3 內源性H2S含量的檢測
取組織勻漿310 μL,加入2%(W/V)醋酸鋅30 μL;20%(W/V)三氯醋酸60 μL;然后再加入20 mmol/L二甲基對苯二胺硫酸鹽(7.2 mol/L鹽酸)40 μL和30 mmol/L(1.2 mol/L 鹽酸)FeCl3 40 μL,迅速合上EP管振蕩數下后,轉移至37℃生化培養箱靜置10 min;高速離心12 000 r/min,10 min;分光光度計檢測670 nm處OD值。實驗組H2S含量以實驗組OD值/對照組OD值×100%表示。
1.4 TH陽性細胞免疫組織化學染色
酪氨酸羥化酶(TH)是DA神經元合成DA的限速酶,被廣泛運用為DA神經元的標志物。切片脫蠟后,加入3%H2O2阻斷內源性過氧化物酶的活性,高壓修復,紫外線阻斷非特異性背景染色,1∶1000 TH一抗4℃冰箱孵育過夜,正常山羊血清封閉10 min,加入相應二抗孵育10 min,DAB顯色液顯色。各步驟間均用0.01 mol/L PBS(pH=7.4)沖洗。之后流水沖洗,梯度酒精脫水,二甲苯置換酒精,封片。對每只動物5片切片左右側黑質(substantia nigra,SN)的細胞數目進行計數。損傷側細胞殘存DA神經元數目以損傷側TH陽性細胞數目/未損傷側TH陽性細胞數目(右側/左側)×100表示。
1.5 黑質谷胱甘肽過氧化物酶(glutathione peroxidase,GSH-Px)活性和丙二醛(malondialdehyde,MDA)含量檢測
將各組大鼠在用3%的戊巴比妥鈉(30 mg/kg)腹腔注射麻醉下迅速斷頭處死,冰浴中快速剝離大腦,參照Paxinos等的[11]鼠腦立體定位圖譜,準確切取中腦黑質腦組織。置于勻漿介質中,用相應的測試盒檢測黑質GSH-Px活性及MDA含量。
1.6 統計學方法
采用統計軟件SPSS 11.0對數據進行分析,正態分布計量資料以均數±標準差(x±s)表示,組間比較用One-way ANOVA 方法,以P < 0.05為差異有統計學意義。
2 結果
2.1 6-OHDA損傷對大鼠黑質CBS酶活性的影響
黑質CBS酶活性動態變化結果顯示:6-OHDA損傷后隨時間的推移,黑質CBS酶活性逐漸下降。與對照組比較,損傷后第7天黑質CBS酶有所下降[(96.21±8.40)%],但差異無統計學意義(P > 0.05);損傷后第11天黑質CBS酶活性[(86.48±9.85)%]較對照組下降明顯,差異有統計學意義(P < 0.05);損傷后第17天CBS酶活性下[(75.16±7.45)%]降更加明顯,差異有高度統計學意義(P < 0.01)。見圖1。
與對照組比較,*P < 0.05,**P < 0.01
圖1 6-羥基多巴胺損傷黑質內源性胱硫醚-β-合酶活性的變化
2.2 6-OHDA損傷對大鼠黑質內源性H2S生成的影響
采用亞甲基藍分光光度計法檢測在6-OHDA損傷時黑質內源性H2S生成的動態變化結果顯示:與對照組相比,6-OHDA損傷后第7天黑質內源性H2S的含量[(90.12±10.03)%]即出現明顯下降,差異有統計學意義(P < 0.05),在損傷后的第11天[(82.58±9.52)%]和第17天[(78.16±11.55)%]黑質內源性H2S的生成繼續減少,差異均有高度統計學意義(P < 0.01)。見圖2。
與對照組比較,*P < 0.05,**P < 0.01
圖2 6-羥基多巴胺損傷黑質內源性硫化氫含量的變化
2.3 外源性H2S對大鼠黑質TH陽性細胞數量的影響
TH陽性細胞免疫組織化學染色結果顯示:與對照組[(99.84±4.74)%]比較,6-OHDA單側損傷黑質后7 d(D7組)TH陽性細胞數即有明顯下降[(84.32±6.06)%],差異有統計學意義(P < 0.05);但當在6-OHDA損傷前給予NaHS預處理[NaHS預處理組,(96.15±5.03)%],與D7組比較,黑質TH陽性細胞數明顯回升,差異有高度統計學意義(P < 0.05)。
2.4 外源性H2S對大鼠黑質GSH-Px活性及MDA含量的影響
通過檢測黑質GSH-Px活性及MDA含量進一步觀察了H2S抗6-OHDA誘導氧化應激損傷的黑質DA神經元保護作用。結果顯示:與對照組相比6-OHDA損傷組黑質GSH-Px活性明顯下降及MDA含量明顯增加(P < 0.05);而給予NaHS預處理明顯增加了GSH-Px的活性,減少了MDA的生成。見表1。
表1 外源性硫化氫對大鼠黑質GSH-Px活性
及MDA含量的影響(x±s)
注:與對照組比較,*P < 0.05;與D7組比較,#P < 0.05;GSH-Px:谷胱甘肽過氧化物酶;MDA:丙二醛;NaHS:硫氫化鈉
3 討論
研究已證實H2S代謝異常參與了AD[12]、Down's綜合癥[13]、中風[14]等中樞神經系統疾病的發生。Hu等[3]研究觀察到,6-OHDA損傷第4周,大鼠出現明顯PD癥狀時黑質內源性H2S含量較對照組減少約25%,差異有顯著性。然而有證據表明,鼠、猴表現出PD癥狀時,黑質DA能神經元缺失已達60%~70%[15]。運動障礙癥狀懷疑或確定為PD時,人的黑質致密帶DA缺失已達50%~60%[16]。那么,在6-OHDA損傷黑質DA能神經元早期內源性H2S生成的變化究竟如何,尚未明確。
為了觀察內源性H2S在PD發生早期的變化,本實驗首先觀察了6-OHDA損傷過程中大鼠黑質內源性CBS酶活性的動態變化。結果顯示,6-OHDA損傷后第7天CBS酶活性開始下降,但并不顯著;而損傷后第11、17天CBS酶活性則明顯下降。同時檢測內源性H2S含量結果顯示,6-OHDA損傷后早期(第7天)H2S含量即開始下降,約比對照組減少10%左右,差異有顯著性;隨損傷時間延長H2S含量在逐漸下降。6-OHDA損傷后早期(第7天),黑質TH陽性細胞數量也出現約16%的減少;與此同時黑質GSH-Px活性下降及MDA含量的增加,而 GSH-Px的活性降低,MDA水平增高可誘導細胞膜脂質類過氧化損害,抗氧化防御機制受損導致細胞損傷。該實驗結果提示內源性H2S參與了黑質的氧化損傷過程。
為了進一步觀察內源性H2S在PD中的作用,本實驗在6-OHDA損傷前應用H2S供體NaHS[5.6mg/(kg·day)]腹腔注射連續3周作為預處理。結果顯示,NaHS逆轉了因6-OHDA損傷早期導致的黑質TH陽性細胞數量地減少,發揮了DA能神經元的保護作用。Hu等[3]也證實給予外源性NaHS補充H2S可以拮抗6-OHDA誘導地神經損傷,增加黑質TH陽性細胞數量及蛋白表達,支持本實驗結果。但本實驗與Hu等[3]實驗最大的不同在于本實驗觀察6-OHDA損傷早期內源性H2S的變化及外源性H2S的預防作用;而Hu等[3]實驗觀察的則是6-OHDA損傷中晚期H2S的變化及外源性H2S的治療作用。
氧化應激在PD的病理中發揮了重要的作用[4,17]。研究證實H2S是細胞重要的抗氧化劑[18-19]。為了進一步觀察H2S預處理是否可以通過抑制6-OHDA誘導的氧化應激發揮早期DA能神經元的保護作用,本研究在6-OHDA損傷前應用NaHS預處理。結果顯示,給予NaHS明顯增加了GSH-Px的活性,降低了MDA的水平。提示,H2S可以通過抗氧化應激發揮黑質DA能神經元的保護作用。研究表明在神經系統中,H2S可以通過加強谷氨酸的攝取保護星形膠質細胞拮抗H2O2誘導的神經損傷[20];可以增加還原性GSH的生成發揮神經元保護作用[21];本實驗室既往也證實H2S可以通過減少活性氧生成、提高線粒體膜電位發揮抗氧化應激的神經細胞保護作用[22],均支持本實驗結果。
綜上所述,6-OHDA誘導的黑質氧化應激損傷致使內源性H2S含量減少及其生成酶CBS活性下降,而外源性H2S可以通過增加GSH-Px活性,減少MDA含量早期發揮抗黑質氧化損傷的DA能神經元保護作用。本實驗為進一步明確PD的發病機制及H2S的PD預防作用提供了重要的科學依據。
[參考文獻]
[1] Morrison LD,Smith DD,Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer's disease [J]. J Neurochem,1996,67(3):1328-1331.
[2] Wong PT,Qu K,Chimon GN,et al. High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide [J]. J Neuropathol Exp Neurol,2006,65(2):109-115.
[3] Hu LF,Lu M,Tiong CX,et al. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models [J]. Aging Cell,2010,9(2):135-146.
[4] Moore DJ,West AB,Dawson VL ,et al. Molecular pathophysiology of Parkinson's disease [J]. Annu Rev Neurosci,2005,28:57-87.
[5] Yoo MS,Chun HS,Son JJ,et al. Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson's disease[J]. Brain Res Mol Brain Res,2003,110(1):76-84.
[6] Kimura Y,Kimura H. Hydrogen sulfide protects neurons from oxidative stress [J]. Faseb J,2004,18(10):1165-1167.
[7] Kamat PK,Kalani A,Givvimani S,et al. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice [J]. Neuroscience,2013,252: 302-319.
[8] Luo Y,Yang X,Zhao S,et al. Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons[J]. Neurochem Int,2013,63(8):826-831.
[9] Tolwani RJ,Jakowec MW,Petzinger GM,et al. Experimental models of Parkinson's disease: insights from many models [J]. Lab Anim Sci,1999,49(4):363-371.
[10] Bove J,Prou D,Perier C ,et al. Toxin-induced models of Parkinson's disease [J]. NeuroRx,2005,2(3):484-494.
[11] Paxinos G,Watson C. The rat brain in stereotaxic coordinate,compact[M]. The 3rd. San Diego:San Diego Academic Press,1996:356.
[12] Eto K,Asada T,Arima K,et al. Brain hydrogen sulfide is severely decreased in Alzheimer's disease[J]. Biochem Biophys Res Commun,2002,293(5):1485-1488.
[13] Kamoun P,Belardinelli MC,Chabli A,et al. Endogenous hydrogen sulfide overproduction in Down syndrome [J]. Am J Med Genet A,2003,116A(3):310-311.
[14] Qu K,Chen CP,Halliwell B,et al. Hydrogen sulfide is a mediator of cerebral ischemic damage [J]. Stroke,2006,37(3):889-893.
[15] Di Monte DA,McCormack A,Petzinger G,et al. Relationship among nigrostriatal denervation,parkinsonism,and dyskinesias in the MPTP primate model [J]. Mov Disord,2000,15(3):459-466.
[16] Diguet E,Gross CE,Bezard E,et al. Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment [J]. Neurology,2004,62(1):158-159.
[17] Wang XL,Xing GH,Hong B,et al. Gastrodin prevents motor deficits and oxidative stress in he MPTP mouse model of Parkinson's disease: Involvement of ERK1/2-Nrf2 signaling pathway [J]. Life Sci,2014,114(2):77-85.
[18] Liu YY,Nagpure BV,Wong PT,et al. Hydrogen sulfide protects SH-SY5Y neuronal cells against d-galactose induced cell injury by suppression of advanced glycation end products formation and oxidative stress [J]. Neurochem Int,2013,62(5):603-609.
[19] Kimura Y, Mikami Y, Osumi K,et al. S Polysulfides are possible H2S-derived signaling molecules in rat brain. [J]. FASEB J,2013,27(6):2451-2457.
[20] Lu M,Hu LF,Hu G,et al. Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake [J]. Free Radic Biol Med,2008, 45(12):1705-1713.
[21] Kimura Y,Kimura H. Hydrogen sulfide protects neurons from oxidative stress [J]. FASEB J ,2004,18(10):1165-1167.
[22] Meng JL,Mei WY,Dong YF,et al. Heat shock protein 90 mediates cytoprotection of hydrogen sulfide against chemical hypoxia-induced injury in PC12 cells[J]. Clin Exp Pharmacol Physiol,2011,38(1):42-49.
(收稿日期:2014-09-16 本文編輯:蘇 暢)