卓麗萍,黃賽娥,2*
(1.福建中醫藥大學,福建 福州 350108;2.福建中醫藥大學附屬康復醫院,福建 福州 350103)
?
鈉氫交換泵在缺血性腦損傷中的研究進展
卓麗萍1,黃賽娥1,2*
(1.福建中醫藥大學,福建 福州 350108;2.福建中醫藥大學附屬康復醫院,福建 福州 350103)
缺血性腦損傷機制復雜,目前治療僅限于溶栓和機械性血管再通。鈉氫交換器(sodium/hydrogen exchanger,NHE)是細胞膜上的跨膜轉運糖蛋白,能調節細胞內pH值穩定,同時調節細胞容量的重要離子通道。NHE在缺血性腦損傷中發揮重要作用,NHE抑制劑的保護作用為臨床治療提供方向和思路。從NHE的結構和生理功能、調控及在缺血性腦損傷中的作用進行綜述。
鈉氫交換泵;缺血性腦損傷;研究進展
中風分為兩種類型:一種是由血栓或栓塞所造成的缺血性腦卒中,另一種是由出血造成的出血性腦卒中。據報道美國平均每年約有80萬中風病例,是引起死亡的主要原因,而20%中風幸存者需要長期的護理,15%~30%永久殘疾難以恢復正常生活工作[1]。目前治療僅限于rtPA溶栓和血管再通,然而rtPA的治療時間窗較窄,加上溶栓后顱內出血高風險,僅有約5%的病人獲益[2]。
雖然阻斷NMDA受體介導的神經元毒性有神經保護作用,然而需要早期治療限制臨床使用[3]。NHE作為跨膜蛋白家族成員,通過排出H+移入Na+,維持細胞內pH(pHi)穩定和細胞容量穩態,有望成為缺血性腦損傷新的治療靶點。本文從NHE的結構和生理功能、調控及在缺血性腦損傷中的作用進行綜述。
目前已有10個NHE亞型(NHE1-NHE10)被證實,其中NHE1在中樞神經系統表達最豐富,主要分布在細胞膜上,而膜質微區也有表達,如成纖維細胞板狀偽足、上皮細胞基底側膜等[4]。其它NHE的亞型具有組織分布特異性,具有不同的細胞學功能。比如NHE2和NHE3主要表達于胃腸道和腎臟,而NHE5主要分步在腦組織。NHE6和NHE7表達在線粒體和轉運高爾基細胞器,并且是腦、心臟和骨骼肌等代謝率高的組織。NHE8和NHE9也表達于腎臟、胃和腸,而NHE10僅表達于破骨細胞。本文主要針對NHE1進行綜述。
所有NHE亞型大約由600~900個氨基酸組成,約40%的氨基酸同源性。NHE1有815個氨基酸,N端、C端都在細胞質。N端包括12個跨膜區域(TM),在大多數NHES高度保守,主要參與Na+、H+轉運。TM6和TM7具有95%的同源性,在陽離子轉運中起核心作用,而TM4和TM9可能跟NHE1抑制劑敏感性相關。TM11主要感受pH變化,并參與細胞表面針對NHE1蛋白的結合。NHE1的C端相對不保守,包含活化NHE1的主要調節位點,可被胞內外信號傳遞和磷酸化修飾激活。
Luo等[5]認為細胞酸中毒、生長因子、低氧等多種因素可激活NHE1。激素和生長因子可能通過G蛋白偶聯受體機制激活NHE1。激活的受體酪氨酸酶通過MAPK亞家族ERK-p90核糖體S6蛋白激酶RSK(p90RSK)通路調控NHE1激活。如moor等[6]發現心肌缺血/再灌注后,NHE1的C端Ser703殘基可被p90RSK磷酸化,Thr717、Ser722、Ser725和Ser728殘基都可直接被磷酸化的p38MAPK激活。
NHE1的兩大基本功能:調節細胞內pH和細胞容量。首先,細胞pH調節途徑主要包括NHE1和碳酸氫鹽轉運系統,其中NHE1途徑是神經元最普遍的機制,糾正細胞酸中毒和維持酸堿平衡,包括皮質神經元、皮質和海馬星形膠質細胞和小膠質細胞[7]。其次,NHE調控Na+內流,高滲透壓誘導細胞脫水后,NHE1促進Na+凈增加,從而恢復細胞容量。由于在調控pHi和細胞容量中的重要作用,NHE1參與細胞生長、分化、增殖、遷移和死亡的生理過程。
NHE抑制劑主要分為兩類,一類為阿米洛利及其衍生物,如二甲基氨氯吡咪(DMA)、5-N-乙基-N-異丙基-阿米洛利(EIPA)。另一類別包括苯甲酰胍及其衍生物,如HOE642、HOE694和EMD-85131。阿米洛利及衍生物對NHE1和NHE2的抑制活性較好,但對NHE3和NHE4不敏感。阿米洛利對于NHE亞型抑制無特異性,而胍衍生物效力、特異性以及NHE1選擇性更好。
3.1 NHE1與缺血性神經元死亡
細胞酸中毒后影響離子通道的開關,而活化的NHE1促進H+外排,維持神經元生理功能。乳鼠神經元NHE1敲除后pHi平衡狀態失調,酸中毒后H+外排受限[8]。Yao等[9]在CA1椎體神經元的研究也得到類似的特點。另一方面,細胞缺血缺氧酸中毒后激活NHE1,引起Na+內流,通過鈉鈣交換器(NCX)繼發引起胞內Ca2+超載,引起Ca2+介導的一系列損傷。Luo等[8]研究發現乳鼠皮質神經元氧糖剝奪(OGD)3h再復氧(REOX)1h,細胞內Na+升高7倍,Ca2+升高1.5倍。REOX 21h后,細胞死亡增多到(68±10)%。HOE642和NHE1敲除都能減輕OGD/REOX引起細胞內Na+和Ca2+超載和神經元的死亡。
研究證實NHE1抑制劑可對抗谷氨酸誘導神經元興奮毒性損傷。NHE1抑制劑KR-33028能下調谷氨酸介導離體皮質神經元LDH的釋放[10]。KR-33028具有抗凋亡作用,減少caspase3活化、TUNEL陽性率。Matsumoto等[11]證實SM-20220作為NHE非特異性抑制劑,減少谷氨酸誘導的神經元死亡,減輕細胞水腫,并呈劑量依賴性。SM-20220也能抑制谷氨酸誘導的細胞內Ca2+的升高和酸中毒。
Chu等[12]發現缺血性損傷中,激酶磷酸化可激活NHE1,而ERK信號通路起最重要的作用。Luo等[8]研究發現神經元OGD/REOX激活ERK1/2,進而磷酸化下游靶點,如Elk-1和p90RSK,在激活NHE1中發揮重要作用。OGD 2h和REOX 10min后,Elk-1和p90RSK磷酸化水平升高,1h后NHE1顯著性激活。總之,研究提示缺血可過度激活NHE系統,反而加劇神經毒性和細胞水腫,而NHE1的抑制劑通過抑制Na+和Ca2+內流,減輕缺血性損傷。
3.2 NHE1與缺血性神經膠質的損傷
Kintner等[13]研究證實NHE1是大腦皮質星形膠質細胞維持pHi穩定的主要調節器。當敲除NHE1可減輕缺血損傷引起的細胞離子調節失衡和水腫。NHE1敲除的星形膠質細胞pHi比野生型靜息低,而HOE642可酸化野生型細胞。
星形膠質細胞在攝取谷氨酸起主要作用,能量來源于跨膜H+梯度。細胞氧化應激后出現酸中毒,影響谷氨酸的攝取,而NHE1在此過程通過排出H+,維持pHi穩定。另一方面,過度激活星形膠質細胞NHE1,引起Na+超載和細胞水腫,抑制谷氨酸的攝取。OGD/REOX顯著性激活小鼠皮質星形膠質細胞NHE1,導致細胞內Na+、Ca2+潴留,抑制或敲除星形膠質細胞NHE1,可減輕胞內Na+升高和細胞水腫,促進谷氨酸的攝取[13]。Cengiz等[7]發現小鼠海馬星形膠質細胞REOX處理5h后,細胞內Na+濃度達到35mM,抑制谷氨酸的攝取。
3.3 NHE1與血腦屏障
血腦屏障(blood brain barrier,BBB)是存在于腦血管和組織之間的生理和代謝屏障,維持中樞神經系統正常生理狀態和內環境穩態。微血管內皮細胞(endothelial cells,EC)作為解剖學基礎,對維持BBB的功能發揮重要作用。Zhang等[14]發現腦缺血后不久,可見BBB的破壞和神經與血管功能障礙,EC活化為激活狀態,促進基質金屬蛋白酶的表達,加重神經炎癥反應和BBB的破壞。另一方面缺血損傷后,周皮細胞收縮繼發引起微血管持續收縮,伴隨EC和星形膠質細胞整合素β1表達減少,增加微血管的通透性。
Sipos等[15]證實NHEs能夠調控大腦毛細血管EC 酸堿平衡,EIPA抑制NHE可使細胞酸化。Lam等[16]證實腦缺血時缺氧、低糖和精氨酸加壓素能顯著性激活大腦微血管內皮細胞NHE。Suzuki等[17]證明NHE抑制劑在缺血性BBB破壞中的保護作用,SM-20220可減輕大鼠大腦中動脈閉塞(middle cerebral artery occlusion,MCAO)引起的水腫和大腦的損傷。O’Donnell等[18]也證實HOE642可減輕MACO早期數小時的腦水腫和Na+潴留。另外,NHE1也通過影響BBB的通透性和緊密連接功能,加重功能紊亂。NHE1抑制劑sabiporide可減小缺血/低糖缺氧引起的梗死面積,降低BBB通透性起保護作用[19]。
鑒于NHE1廣泛表達于神經系統,在體抑制NHE1對BBB破壞的保護作用可能是通過EC或其他實質細胞,將來特異性敲除EC的NHE1小鼠可解釋此機制。總之,在缺血性腦損傷BBB破壞的治療中,EC結構和功能的完整性至關重要。
3.4 NHE1介導的在體缺血腦損傷
局灶性腦缺血、全腦性缺血和新生兒缺氧缺血性腦病等在體模型都已證實抑制NHE1在缺血性腦損傷的保護作用。Back等[20]證明局部缺血導致ERK1/2-p90RSK通路的激活,進而NHE1磷酸化和表達增加,最終導致腦損傷。隨后Manhas等[21]在動物模型也得出同樣結果,60min的MACO,復灌3min后激活ERK和p90RSK,促進NHE1磷酸化。另外ERK、p90RSK抑制劑都可能通過阻斷NHE1的活化,減輕MCAO梗死體積。HOE642也能減輕MACO的梗死體積[8]。Wang等[22]證實NHE1基因敲除的小鼠30min MCAO和再灌24h后,細胞凋亡和線粒體細胞色素c較野生型減少。Hwang等[23]證實NHE非選擇性阻斷劑EIPA也可顯著減輕成年沙鼠全腦性缺血引起的CA1椎體神經元死亡。
研究證實HOE642在未成熟鼠缺血缺氧腦損傷模型的神經保護作用。缺血缺氧引起離子體內平衡失調,進而導致腦損傷。Ott等[24]研究發現新生兒缺氧缺血后細胞堿中毒跟腦損傷的程度密切相關,持續細胞內堿中毒主要是由于NHE過多的活化。Kendall等[25]證明NHE非選擇性阻斷劑MIA在未成熟小鼠缺血缺氧腦損傷的保護作用。另Cengiz等[26]研究發現HOE642可減輕小鼠缺血缺氧引起的神經退行性變和海馬結構破壞。HOE642不僅能減輕急性腦損傷,也能改善缺血缺氧后期運動和空間學習記憶的能力。總之,NHE1在新生兒缺氧缺血后離子體內平衡失調和神經元損傷中發揮重要作用。
研究也證實局部缺血后NHE1在調節星形膠質細胞功能的重要作用。Sofroiew等[27]證實缺血損傷后,星形膠質細胞活化,存活的細胞肥大、增生和膠質纖維酸性蛋白表達上調。在缺血早期1~3h,非梗死區星形膠質細胞明顯腫脹,最終在壞死區形成膠質疤痕。Cengiz等[26]發現全腦缺血后,海馬星形膠質細胞NHE1顯著性升高。Hwang等[23]證實抑制NHE1可減輕沙鼠海馬CA1區域星形膠質細胞的活化。然而,cengiz和shi等的研究發現HOE642并不能抑制全腦或局部缺血引起的星形膠質細胞聚集,但是NHE1的激活可能改變細胞的功能。最近cengiz等[7]研究證實此觀點,培養的海馬星形膠質細胞OGD后,NHE1激活和表達增加,抑制NHE1可改善細胞內Na+、Ca2+超載,減少膠質細胞源性遞質和促炎因子的釋放。另外抑制NHE1也能減少海馬星形膠質細胞谷氨酸的釋放和促進攝取。因此NHE1抑制劑對星形膠質細胞聚集的作用可能是通過相鄰細胞間接引起,隨著特定細胞敲除NHE1動物模型的研究,將更好揭示在體缺血后NHE1對活化星形膠質細胞功能的影響。
3.5 NHE1在小膠質細胞介導的炎癥中的作用
小膠質細胞屬于單核巨噬細胞系統,廣泛分布于中樞神經系統,作為病理事件傳感器,在腦缺血損傷炎癥反應發揮調控作用。然而缺血損傷如何激活小膠質細胞尚不明確。“經典活化”M1小膠質細胞可能通過啟動促炎反應的神經毒性加重腦損傷,而自由基清除劑具有保護作用。然而,僅抑制小膠質細胞的增殖反而加重缺血腦損傷[28]。可推斷小膠質細胞在缺血性腦損傷的作用與缺血階段及部位密切相關。小膠質細胞/巨噬細胞是一種高度可塑性細胞,微環境信號刺激可出現亞型和功能的改變。Hu等[29]的研究發現在腦缺血早期,小膠質細胞和新募集的巨噬細胞表現為M2表型,但隨后在梗死周圍逐漸轉化為M1表型。因此對腦缺血后小膠質細胞活化表型的空間和時間特異性的研究,將提高缺血后炎癥反應的認識。
NADPH氧化酶(NOX)在小膠質細胞的活化和功能發揮重要作用,包括吞噬作用和“呼吸爆發”,是小膠質細胞內活性氧的主要來源。因NOX對pHi敏感,當缺血引起細胞內H+的潴留,導致細胞去極化和酸中毒,可破壞NOX。NHE1參與維持細胞內最適pH值,維持小膠質細胞的“呼吸爆發”。LIU等[30]發現NHE1是小膠質細胞內基礎pH的主要調控者,也能恢復細胞內酸超載。LPS、PMA等促炎因子和OGD/REOX能活化小膠質細胞,促進NHE1的激活,與NHE1介導H+穩態密切相關。HOE642不僅影響小膠質細胞pHi的調控,而且下調LPS、OGD/REOX誘導的ROS及促炎因子IL-6、IL-1β和TNF-α的產生。Shi等[31]在小鼠MCAO模型證實類似的結果,發現NHE1抑制劑或基因敲除可顯著性抑制小膠質細胞的活化,也能抑制NOX的激活和促炎因子的產生。因腦缺血后小膠質細胞的活化持續數天,阻斷NHE1后的保護作用為延長治療時間窗提供可能性。
腦組織缺血或外傷,釋放ATP和ADP到細胞外,促進小膠質細胞的活化和遷移,并且遷移具有濃度依賴性。denker等[32]發現NHE1通過C端與細胞骨架相關蛋白埃茲蛋白-根蛋白-膜突蛋白(ERMs)相互作用,調控肌動蛋白骨架重塑和成纖維細胞形態改變。因此可認為NHE1調控細胞形態、粘附和定向運動。最近shi等[33]研究證實NHE1也表達在乳鼠小膠質細胞,特別是細胞表面負責定向運動的板狀偽足。在化學引誘物緩激肽(BK)的刺激下,小膠質細胞具有更活躍的偽足活動,并可被HOE642抑制[34]。BK的刺激下活化NHE1,也是在板狀偽足,并引起pHi升高[33]。pH升高可能激活絲切蛋白,誘導偽足形成,促進細胞遷移。NHE1除了調控小膠質細胞pHi,也跟NCXrev功能相關,引起細胞內Ca2+升高,參與調控細胞遷移。
一直以來NHE1被認為是心肌缺血再灌注損傷的治療靶點,大量研究都已證實NHE抑制劑在心肌缺血再灌注損傷中的保護作用。NHE抑制劑保護作用主要是通過減輕細胞內Na+超載,激活組織內Na+/Ca+的交換。隨著腦缺血再灌注研究的進展,可認為NHE1在調控所有缺血損傷中具有共同的機制。
鑒于NHE1抑制劑在腦缺血動物模型中顯著的神經保護作用,為中風的藥物治療提供新的希望。雖然關于NHE1抑制劑治療缺血中風的臨床試驗尚未開展。然而NHE1抑制劑對缺血再灌注損傷心肌保護已被評估。在mentzer等[35]發現HOE642顯著性減少非致命性心肌梗死,但是增加腦血管栓塞引起的死亡,可能因HOE642突然撤退引起血小板激活。最近Karmazyn等[36]的研究提示NHE1抑制劑的副作用可能跟藥物劑量過大相關。因此,NHE1作為腦缺血再灌注損傷潛在的治療靶點,尚需進一步探索。
[1] GOLDSTEIN LARRY B, BUSHNELL CHERYL D, ADAMS ROBERT J,et al.Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke,2011,42(2):517-584.
[2] WARDLAW JOANNA M, MURRAY VERONICA, BERGE EIVIND, et al. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis[J]. Lancet, 2012,379(9834):2364-2372.
[3] HILL MICHAEL D, MARTIN RENEE H, MIKULIS DAVID, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol,2012,11(11):942-950.
[4] LEE SH,KIM T,PARK ES, et al.NHE10, an osteoclast-specific member of the Na+/H+exchanger family, regulates osteoclast differentiation and survival [corrected][J].Biochem Biophys Res Commun,2008,369(2):320-326.
[5] LUO J,SUN D .Physiology and pathophysiology of Na(+)/H(+) exchange isoform 1 in the central nervous system[J].Curr Neurovasc Res,2007,4(3):205-215.
[6] Moor AN,Gan XT,Karmazyn M et al.Activation of Na+/H+exchanger-directed protein kinases in the ischemic and ischemic-reperfused rat myocardium[J].J Biol Chem,2001,276(19):16113-16122.
[7] CENGIZ P,KINTNER DB,CHANANA V ,et al. Sustained Na+/H+exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation[J].PLoS One,2014,9(1):e84294.
[8] LUO JING, KINTNER DOUGLAS B, SHULL GARY E, et al. ERK1/2-p90RSK-mediated phosphorylation of Na+/H+exchanger isoform 1. A role in ischemic neuronal death[J]. J Biol Chem,2007,282(38):28274-28284.
[9] YAO H, MA E, GU X Q, et al. Intracellular pH regulation of CA1 neurons in Na(+)/H(+) isoform 1 mutant mice[J]. J Clin Invest, 1999,104(5):637-645.
[10] LEE BK,LEE DH,PARK S, et al. Effects of KR-33028, a novel Na+/H+exchanger-1 inhibitor, on glutamate-induced neuronal cell death and ischemia-induced cerebral infarct[J].Brain Res,2009,1248(N),22-30.
[11] MATSUMOTO Y,YAMAMOTO S,SUZUKI Y, et al.Na+/H+exchanger inhibitor, SM-20220, is protective against excitotoxicity in cultured cortical neurons[J].Stroke,2004,35(1):185-190.
[12] CHU CT,LEVINTHAL DJ,KULICH SM,et al.Oxidative neuronal injury. The dark side of ERK1/2[J].Eur J Biochem,2004,271(11):2060-2066.
[13] KINTNER DB,SU G,LENART B, et al.Increased tolerance to oxygen and glucose deprivation in astrocytes from Na(+)/H(+) exchanger isoform 1 null mice[J].Am J Physiol Cell Physiol,2004,287(1):C12-21.
[14] ZHANG L,ZHANG ZG,CHOPP M .The neurovascular unit and combination treatment strategies for stroke[J].Trends Pharmacol Sci,2012,33(8):415-422.
[15] SIPOS H,TOROCSIK B,TRETTER L, et al.Impaired regulation of pH homeostasis by oxidative stress in rat brain capillary endothelial cells[J].Cell Mol Neurobiol,2005,25(1):141-151.
[16] LAM TI,WISE PM,O'DONNELL ME .Cerebral microvascular endothelial cell Na/H exchange: evidence for the presence of NHE1 and NHE2 isoforms and regulation by arginine vasopressin[J].Am J Physiol Cell Physiol,2009,297(2):C278-289.
[17] SUZUKI Y,MATSUMOTO Y,IKEDA Y, et al.SM-20220, a Na(+)/H(+) exchanger inhibitor: effects on ischemic brain damage through edema and neutrophil accumulation in a rat middle cerebral artery occlusion model[J].Brain Res,2002,945(2):242-248.
[18] O'DONNELL ME,CHEN YJ,LAM TI ,et al.Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger[J].J Cereb Blood Flow Metab,2013,33(2):225-234.
[19] PARK SL,LEE DH,YOO SE ,et al. The effect of Na(+)/H(+) exchanger-1 inhibition by sabiporide on blood-brain barrier dysfunction after ischemia/hypoxia in vivo and in vitro[J].Brain Res,2010,1366(N):189-196.
[20] BACK SA,LUO NL,BORENSTEIN NS, et al.Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury[J].J Neurosci,2001,21(4):1302-1312.
[21] MANHAS N,SHI Y,TAUNTON J, et al.p90 activation contributes to cerebral ischemic damage via phosphorylation of Na+/H+exchanger isoform 1[J].J Neurochem,2010,114(5):1476-1486.
[22] WANG Y,LUO J,CHEN X, et al.Gene inactivation of Na+/H+exchanger isoform 1 attenuates apoptosis and mitochondrial damage following transient focal cerebral ischemia[J].Eur J Neurosci,2008,28(1):51-61.
[23] HWANG IK,YOO KY,AN SJ ,et al.Late expression of Na+/H+exchanger 1 (NHE1) and neuroprotective effects of NHE inhibitor in the gerbil hippocampal CA1 region induced by transient ischemia[J].Exp Neurol,2008,212(2):314-323.
[24] OTT M,ROBERTSON JD,GOGVADZE V, et al.Cytochrome c release from mitochondria proceeds by a two-step process[J].Proc Natl Acad Sci USA,2002,99(3):1259-1263.
[25] KENDALL GS,ROBERTSON NJ,IWATA O, et al.N-methyl-isobutyl-amiloride ameliorates brain injury when commenced before hypoxia ischemia in neonatal mice[J].Pediatr Res,2006,59(2):227-231.
[26] CENGIZ P,KLEMAN N,ULUC K, et al.Inhibition of Na+/H+exchanger isoform 1 is neuroprotective in neonatal hypoxic ischemic brain injury[J].Antioxid Redox Signal,2011,14(10):1803-1813.
[27] SOFRONIEW MV,VINTERS HV.Astrocytes: biology and pathology[J].Acta Neuropathol,2010,119(N1):7-35.
[28] LALANCETTE-HEBERT M,GOWING G,SIMARD A ,et al.Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain[J].J Neurosci,2007,27(10):2596-2605.
[29] HU X,LI P,GUO Y, et al.Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J].Stroke,2012,43(11):3063-3070.
[30] LIU Y,KINTNER DB,CHANANA V, et al.Activation of microglia depends on Na+/H+exchange-mediated H+homeostasis[J].J Neurosci,2010,30(45):15210-15220.
[31] SHI Y,CHANANA V,WATTERS JJ, et al.Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains[J].J Neurochem,2011,119(1):124-135.
[32] DENKER SP,HUANG DC,ORLOWSKI J ,et al.Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation[J].Mol Cell,2000,6(6):1425-1436.
[33] SHI Y,YUAN H,KIM D, et al.Stimulation of Na(+)/H(+) exchanger isoform 1 promotes microglial migration[J].PLoS One,2013,8(8):e74201.
[34] ALBERT-WEISSENBERGER C,SIREN AL,KLEINSCHNITZ C .Ischemic stroke and traumatic brain injury: the role of the kallikrein-kinin system[J].Prog Neurobiol,2013,101-102(N):65-82.
[35] MENTZER RM JR,BARTELS C,BOLLI R, et al.Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study[J].Ann Thorac Surg,2008,85(4):1261-1270.
[36] KARMAZYN M.NHE-1: still a viable therapeutic target[J].J Mol Cell Cardiol,2013,61(N):77-82.
(責任編輯:宋勇剛)
Advance in the Research of Na-H Exchanger in Ischemic Brain Injury
Zhuo Liping1,Huang Sai'e1,2*
(1.Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China;2.Department of Rehabilitation Medicine,Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China)
Ischemic brain injury results from complicated cellular mechanisms.The present therapy for acute ischemic stroke is limited to thrombolysis and mechanical recanalization. The sodium/hydrogen exchangers (NHEs) are a family of membrane proteins and play a crucial role in maintaining intracellular pH (pHi) and cell volume homeostasis.NHE plays an important role in ischemic brain injury,and NHE inhibitors have significant protective effects. This review focuses on the structure,physiological, regulation as well as its role in ischemic brain injury.
Na+/H+Exchanger;Ischemic Brain Injury;Research Progress
2014-08-24
卓麗萍(1988-),女,福建中醫藥大學碩士研究生,研究方向為腦血管疾病康復。
黃賽娥(1973-),女,福建中醫藥大學附屬康復醫院副主任醫師,研究方向為腦血管疾病康復。
R743.33
A
1673-2197(2015)01-0040-04
10.11954/ytctyy.201501019