如果對于定義域I內某個區間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說函數f(x)在區間D上是減函數.
如果函數y=f(x)在區間D上是增函數或減函數,那么就說函數y=f(x)在這一區間具有(嚴格的)單調性,區間D叫做y=f(x)的單調區間.
(2)①一般地,函數的單調性與其導函數的正負有如下關系:
在某個區間(a,b)內,如果f′(x)>0,那么函數y=f(x)在這個區間內單調遞增;如果f′(x)<0,那么函數y=f(x)在這個區間內單調遞減.
②證明函數f(x)=2x3+6x2+7在(0,2)內是減函數.
③一般地,如果在區間[a,b]上函數y=f(x)的圖象是一條連續不斷的曲線,那么它必有最大值和最小值.
筆者還發現,《數學1·必修·A版》使用的都是“區間上”,這是準確的(因為它符合“上”的含義);《數學·選修22·A版》對于開區間使用的都是“區間內”,對于閉區間使用的都是“區間上”,這也是準確的(因為它們分別符合“內”、“上”的含義).……p>
登錄APP查看全文