李柯慧 王世民 徐世峰 周永軍 徐丹
摘 要:該文通過(guò)將Gd摻雜的CeO2基電解質(zhì)(GDC)與過(guò)渡族金屬氧化物(CO3O4)進(jìn)行復(fù)合,制備固體氧化物燃料電池電解質(zhì)材料。考察CO3O4對(duì)電解質(zhì)樣品的微觀結(jié)構(gòu)和電化學(xué)性能的影響。對(duì)制備所得的復(fù)合電解質(zhì)GDC-x mol% Co3O4(x=0、0.5、1、2、3)進(jìn)行XRD、SEM測(cè)試,觀察其微觀結(jié)構(gòu)變化。利用交流阻抗測(cè)試400~550℃空氣氣氛下不同含量的Co3O4對(duì)電解質(zhì)導(dǎo)電性能的影響。實(shí)驗(yàn)結(jié)果表明:Co元素可以促進(jìn)晶粒生長(zhǎng),提高燒結(jié)性能。阻抗譜測(cè)試表明,隨著Co含量的增加,晶界導(dǎo)電性降低。
關(guān)鍵詞:Gd摻雜的氧化鈰 ?Co3O ?固體氧化物燃料電池 ?復(fù)合電解質(zhì) ?導(dǎo)電性能
中圖分類號(hào):TQ174,TM911 ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1674-098X(2015)10(c)-0128-05
Fabrication and Performance of Ce0.8Gd0.2O1.9–Co3O4 Composite Electrolytes
Li Kehui Wang Shimin Xu Shifeng Zhou Yongjun Xu Dan
(School of Science, Shenyang Aerospace University,Shenyang Liao ning,110136,China)
Abstract:In the present work, Co3O4 was added directly into the electrolyte ceramic Ce0.8Gd0.2O1.9 (GDC),during powder preparation to investigate the effects of the presence of Co3O4 on the microstructure and electrical properties of GDC electrolyte.The structures of GDC-xmol% Co3O4 (x=0,0.5,1,2,3) composite were characterized by X-ray diffraction and SEM.The electrical conductivities were investigated by AC impedance spectroscopy at 400~550oC in air atmosphere with different content of Co3O4.The experimental results show that the Co elements can promote grain growth and improve the sintering performance. Impedance spectroscopy tests show that with the increasing of the content of Co the grain boundary (GB) conductivity decrease.
Key Words:Gd-doped ceria; Co3O4; Solid oxide fuel cell ;Composite electrolyte; Electrical conductivity
作為新一代高效潔凈能源的固體氧化物燃料電池(solid oxide fuel cell,SOFC)是一種新型的發(fā)電裝置,其有著效率高、無(wú)污染、全固態(tài)結(jié)構(gòu)和對(duì)多種燃料氣體的廣泛適應(yīng)性等特點(diǎn),是一種新型綠色能源技術(shù)[1-4]。電池主要包括陰極、陽(yáng)極、電解質(zhì)、連接元件、密封元件。在電池的各個(gè)組成部件中電解質(zhì)起到傳導(dǎo)離子和隔離氣體的作用,它決定著電池的整體性能,因此電解質(zhì)的研究是固體氧化物燃料電池的關(guān)鍵[5-6]。傳統(tǒng)的固體氧化物燃料電池的電解質(zhì)是氧化釔穩(wěn)定的氧化鋯(YSZ)[7],但是YSZ只有在高溫(1000℃)下有較高的離子電導(dǎo)率,而電池在高溫下工作會(huì)使電池組成材料之間發(fā)生化學(xué)反應(yīng)、材料的熱膨脹系數(shù)不匹配、電池老化、電極燒結(jié)。因此,需要開(kāi)發(fā)在中溫區(qū)(600℃~800℃)具有較高電導(dǎo)率的電解質(zhì)材料以降低電池的操作溫度。人們研制出一種新型的電解質(zhì)材料-具有立方螢石結(jié)構(gòu)的CeO2基電解質(zhì),其在500℃~800℃的中溫區(qū)具有較高的氧離子電導(dǎo)率[8-11]。但CeO2基電解質(zhì)材料在1500℃下很難燒結(jié)[12-13],并且在高溫及還原性氣氛下Ce4+容易被還原而出現(xiàn)電子導(dǎo)電,使電池內(nèi)部出現(xiàn)短路現(xiàn)象,降低電池的輸出性能。有文獻(xiàn)報(bào)道在氧化鈰基電解質(zhì)中復(fù)合一些過(guò)渡族金屬氧化物,如MgO,ZnO,F(xiàn)e2O3,TiO2能夠降低鈰基電解質(zhì)的燒結(jié)溫度,提高材料的燒結(jié)性能[14-17]。另外,過(guò)渡族金屬氧化物在電解質(zhì)材料晶界處偏析,會(huì)對(duì)材料的晶界微觀結(jié)構(gòu)和導(dǎo)電性能產(chǎn)生影響[18-19]。該文使用共沉淀方法將過(guò)渡族金屬氧化物(Co3O4)與摻雜Gd的CeO2基電解質(zhì)進(jìn)行復(fù)合,考察不同含量的Co3O4對(duì)氧化鈰基電解質(zhì)材料燒結(jié)性能和電化學(xué)性能的影響。
1 樣品制備
以分析純Ce(NO3)3·6H2O(純度99.99%)、Co(NO3)2·6H2O(純度99.99%)、Gd2O3(純度99.99%)為原料。按化學(xué)計(jì)量比Ce0.8Gd0.2O1.9-x mol%Co3O4(x=0.5,1,2,3)精確稱量以上材料,制成硝酸鹽溶液。將硝酸鹽滴入碳酸氫銨溶液中,滴定時(shí)用氨水調(diào)節(jié)溶液的pH值,使溶液的pH值維持在8左右。然后放入50℃恒溫水浴中靜置陳化16 h,將所得沉淀物用無(wú)水乙醇和蒸餾水分別洗3~4次,之后放在數(shù)字超聲波清洗機(jī)中超聲振蕩15 min左右,目的是減少聚團(tuán)。將樣品加熱蒸干,得到所需的前驅(qū)體材料。將前驅(qū)體材料在600℃下煅燒4 h后放在研缽上進(jìn)行研磨,即得到復(fù)合電解質(zhì)粉末。將研磨后的粉末放入兩面頂環(huán)帶式壓機(jī)內(nèi),在200 MPa下壓制成片狀樣品(直徑為13 mm,厚度1 mm),將樣品在1400℃下燒結(jié)4 h,制得致密的電解質(zhì)片。用所得的片狀樣品進(jìn)行XRD、SEM、交流阻抗等性能測(cè)試。
2 實(shí)驗(yàn)結(jié)果和討論
2.1 XRD譜圖分析
圖1為GDC與GDC-x mol%Co3O4(x=0.5、1、2、3)的復(fù)合電解質(zhì)的XRD圖譜。從圖中可以看出,各個(gè)樣品均為單相性良好的立方螢石結(jié)構(gòu)。樣品的晶胞參數(shù)如表1所示,復(fù)合Co3O4后晶胞參數(shù)先增大后減小。這是由于Co3+的離子半徑(0.065 nm)小于Ce4+的離子半徑(0.087 nm),少量的Co3+會(huì)進(jìn)入晶胞間隙位置使晶胞參數(shù)增大,隨著加入Co含量的增多部分Co3+取代Ce4+又會(huì)使晶胞參數(shù)變小。當(dāng)樣品中Co3O4的含量大于1mol%時(shí)晶胞參數(shù)變化很小,說(shuō)明Co3+在CeO2晶格中的固溶度很小,大部分Co3+以Co3O4形式存在于晶粒間界。
2.2 SEM測(cè)試結(jié)果分析
圖2為GDC電解質(zhì)與GDC-x mol%Co3O4(x=0.5,1,2,3)復(fù)合電解質(zhì)的SEM照片。從圖中可以看出未與Co3O4復(fù)合的GDC樣品晶粒比較小,大小分布比較均勻,有氣孔存在。GDC復(fù)合不同含量的Co3O4樣品,表面形貌變化很大,隨著加入Co元素含量的增多,樣品晶粒明顯增大。這是因?yàn)镃o3+的離子半徑遠(yuǎn)小于Ce4+的離子半徑,部分Co3+會(huì)進(jìn)入晶胞間隙,使晶界處的晶格畸變?cè)龃螅欣诰Ы绲囊苿?dòng),促進(jìn)晶粒生長(zhǎng)[12]。
2.3 交流阻抗譜圖分析
圖3是GDC電解質(zhì)和GDC-x mol%Co3O4(x=0.5,1,2,3)的復(fù)合電解質(zhì)在不同溫度下的阻抗譜。從圖中可以看出不同成分的復(fù)合電解質(zhì)材料在不同溫度下,電導(dǎo)率具有相同的變化規(guī)律。晶粒的電導(dǎo)率變化很小,這可能由于在Ce0.8Gd0.2O1.9晶格中Co3+的固溶度非常低,該文中Co3O4的加入沒(méi)有對(duì)晶粒的導(dǎo)電性能產(chǎn)生影響。但是晶界電導(dǎo)率卻隨著加入Co3O4含量的不同產(chǎn)生了變化,隨著復(fù)合Co3O4含量增加,材料的晶界電導(dǎo)率降低。通常的情況下,材料的晶界導(dǎo)電性能是受晶界處的空間電荷層電阻、晶界處的雜質(zhì)相和樣品的晶粒尺寸等因素共同作用影響的[20]。有文獻(xiàn)中報(bào)道M-O(M=Ti、Co)具有較低的化學(xué)鍵均裂解焓,低的化學(xué)鍵均裂解焓會(huì)使晶界的過(guò)剩能降低,因此過(guò)渡族金屬氧化物在晶界的沉淀就會(huì)抑制受主陽(yáng)離子在晶界分凝,這就降低了空間電荷效應(yīng),從而使晶界電導(dǎo)率增加[21-22]。但是在該文中Co3O4的加入對(duì)晶界電導(dǎo)率有負(fù)面影響,這是由于Co3O4的加入,促進(jìn)晶粒生長(zhǎng),使晶界面積減小。文中Co3O4含量相對(duì)較高,大部分Co3O4聚集在晶粒間界,減小了的晶界面積不利于Co3O4在晶界的分散。Co3O4相當(dāng)于第二相雜質(zhì),對(duì)O2-在晶界處傳導(dǎo)起阻礙作用,使材料晶界電導(dǎo)率降低。圖4中給出了GDC-x mol% Co3O4(x=0、0.5,1,2,3)復(fù)合電解質(zhì)總電導(dǎo)率Arrhenius圖。從圖中可以看出Ce0.8Gd0.2O1.9-x mol%Co3O4 (x=0、0.5,1,2,3)復(fù)合電解質(zhì)在整個(gè)測(cè)試溫度區(qū)間內(nèi)lnσT-1/T曲線呈良好的線性關(guān)系,滿足Arrhenius關(guān)系。
3 結(jié)語(yǔ)
該文采用共沉淀法制備了Ce0.8Gd0.2O1.9-x mol%Co3O4 (x=0、0.5,1,2,3)復(fù)合電解質(zhì)材料。測(cè)試結(jié)果表明:樣品都成單相性良好的立方螢石結(jié)構(gòu),樣品的晶胞參數(shù)變化不明顯,說(shuō)明Co3+在CeO2晶格中的固溶度很小,大部分Co3+以Co3O4形式存在于晶粒間界。SEM測(cè)試結(jié)果顯示,Co3O4可以促進(jìn)GDC晶粒增長(zhǎng),提高燒結(jié)性能。隨著Co含量的增多,晶界導(dǎo)電性降低。綜上所述,Co3O4可以作為CeO2基電解質(zhì)的助燒結(jié)劑;少量的Co3O4在晶界的沉淀可以提高材料的晶界導(dǎo)電性能,過(guò)多的Co3O4聚集在晶界會(huì)阻礙晶界處氧離子的傳導(dǎo),因此必須嚴(yán)格控制復(fù)合電解質(zhì)中Co3O4的含量,有望提高復(fù)合電解質(zhì)的電導(dǎo)率及電池的輸出性能。
參考文獻(xiàn)
[1] 王洪建,曹天宇,史翊翔,等.固體氧化物直接碳燃料電池新型陽(yáng)極研究進(jìn)展[J].無(wú)機(jī)材料學(xué)報(bào),2014,29(7):681-686.
[2] 劉濤.中溫固體氧化物燃料電池Sr1-xTbxCoO3-δ(x≤0.3)陰極材料的制備與性能研究[J].無(wú)機(jī)材料學(xué)報(bào),2013,28(2):212-216.
[3] KIM Y M,HE J,MICHAEL D B,et al. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level[J].Nature Materials.2012,11:888-894.
[4] 毛宗強(qiáng).燃料電池[M].北京:化學(xué)工業(yè)出版社,2005.
[5] WU L,WANG S,WANG S R,et al.Enhancing the performance of doped ceria interlayer for tubular solid oxide fuel cells[J].Journal of Power Sources.2013,240:241-244.
[6] 熊明文,尹屹梅,原鮮霞,等,中溫固體氧化物燃料電池陰極材料SrCo1-xGaxO3-δ的制備及性能研究[J].無(wú)機(jī)材料學(xué)報(bào),2013,28(7):713-719.
[7] HE T M,HE Q,WANG N,et al.Synthesis of nano-sized YSZ powders from glycine-nitrate process and optimization of their properties[J]. Journal of Alloys and Compounds.2005,396: 309-315.
[8] NANDINI J,SHAIL U,DEVENDA K,et al. Ionic conductivity investigation in lanthanum (La)and strontium(Sr)co-doped ceria system[J]. Journal of Power Sources,2013,222:230-236.
[9] P rez-Coll D,N ez P,F(xiàn)rade J R.Effect of samarium content on onset of minor p-type conductivity in ceria-based electrolytes[J]. Journal of Power Sources,2013,227:145-152.
[10] GUO C X,WANG J X,HE C R,et al.Effect of alumina on the properties of ceria and scandia co-doped zirconia for electrolyte-supported SOFC[J].Ceramics International,2013,39(8):9575-9582.
[11] YAO H C,ZHAO X L,CHEN X,et al. Processing and characterization of CoO and Sm2O3 codoped ceria solid solution electrolyte[J]. Journal of Power Sources,2012,205:180-187.
[12] HIROYUK Y,TORU I.Effects of additives on the sintering properties of samaria-doped ceria[J].Journal of Alloys and Compounds,2006,632:408-412.
[13] JIRATCHAYA A,DARUNEE W,SUTHEE W, et al.Effects of cobalt metal addition and ionic conductivity of Sm(Y)-doped ceria solid electrolyte for SOFC[J].Solid State Ionics,2009, 180:1388-1394.
[14] LI B,WEI X,PAN W.Electrical properties of Mg-doped Gd0.1Ce0.9O1.95 under different sintering conditions[J].Journal of Power Sources,2008,183(2):498-505.
[15] LI S J,GE L,GU H T,et al.Sinterability and electrical properties of ZnO-doped Ce0.8Y0.2O1.9 electrolytes prepared by an EDTA citrate complexing method[J].Journal of Alloys and Compounds,2011,509:94-98.
[16] ZHENG Y F,ZHOU M, GE L,et al.Effect of Fe2O3 on Sm-doped ceria solid electrolyte for IT-SOFCs[J].Journal of Alloys and Compounds,2011,509:546-550.
[17] HYUNG S S,DAE W Y,KYOO Y K.Effect of Ti addition on the electric and ionic property of the oxide scale formed on the ferritic stainless steel for SOFC interconnect[J]. International Journal of Hydrogen Energy, 2012,37:16151-16160.
[18] XU D, LIU X M,XU S F,et al.Fabrication and performance of Ce0.85Sm0.15O1.925-Fe2O3 electrolytes in IT-SOFCs[J].Solid State Ionics,2011,192:510-514.
[19] KHAN M A,RIZWAN R,RAQUEL B L, et al. Effect of titania concentration on the grain boundary conductivity of calcium-doped ceria electrolyte[J].Ceramics International,2014, 40(7):9775-9781.
[20]Xin G,RAINER W, Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria, Progress in Materials Science,2006,51: 151-210.
[21] Pérez-Coll D, Marrero-López D,Nú?ez P, et al. Grain boundary conductivity of Ce0.8Ln0.2O2δceramics (Ln=Y,La,Gd,Sm) with and without Co-doping[J].Electrochimica Acta,2006,51:160-166.
[22]GE L,LI R F,HE S C,et al.Effect of titania concentration on the grain boundary conductivity of Ce0.8Gd0.2O1.9 electrolyte[J]. International Journal of Hydrogen Energy, 2012,37:16123-16129.