999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

氟喹諾酮類抗生素環境行為及其生態毒理研究進展

2015-06-05 09:51:45孟磊楊兵薛南冬
生態毒理學報 2015年2期
關鍵詞:污染環境

孟磊,楊兵,薛南冬

中國環境科學研究院 環境基準與風險評估國家重點實驗室,北京100012

氟喹諾酮類抗生素環境行為及其生態毒理研究進展

孟磊,楊兵,薛南冬*

中國環境科學研究院 環境基準與風險評估國家重點實驗室,北京100012

氟喹諾酮類抗生素(FQs)是治療人和動物細菌性感染的高效廣譜抗菌藥,隨著氟喹諾酮類抗生素在禽畜養殖業的廣泛使用,由此引起的環境污染受到人們的關注。本文綜述了氟喹諾酮類抗生素在水體、土壤/沉積物中的污染現狀、吸附降解環境行為及其生態毒理研究進展。FQs抗生素的環境行為和風險應從環境多介質層面進行評估,同時應加強對生態毒性機理以及與其他環境污染物的聯合毒性效應的研究。

氟喹諾酮;抗生素;污染現狀;環境行為;吸附和降解;生態毒理

氟喹諾酮類(fluoroquinolones, FQs)抗生素是一類由人工合成的廣譜類抗菌藥,是喹諾酮的哌嗪基派生物,它通過抑制細菌的DNA解旋酶II(topoisomerase II)和拓撲異構酶IV(topoisomerase IV)而影響細菌的DNA復制過程[1]。FQs藥物都具有酮酸的共同骨架結構(圖1),FQs抗生素是在喹諾酮類抗生素的基礎上,在第一代萘啶酸和第二代吡哌酸的引入氟原子開發出的。常用的FQs藥物主要有諾氟沙星(norfloxacin)、恩諾沙星(enrofloxacin)、環丙沙星(ciprofloxacin)、洛美沙星(lomefloxacin)、氧氟沙星(ofloxacin)、沙拉沙星(sarafloxacin)、培氟沙星(pefloxacin)、依諾沙星(enoxacin)、氟羅沙星(fleroxacin)和二氟沙星(difloxacin)等[2]。由于FQs抗生素在治療人和動物細菌性感染具有良好的藥物動力學特性及治療效果,應用廣、使用量大。據統計,喹諾酮藥物的使用量已位于抗感染藥物前列,2009年,占據全球抗生素17%的市場份額[3]。WHO(1998年)調查顯示[4],據美國、日本、韓國和歐盟等國家和組織的統計,年消費喹諾酮類藥物中作為專用產品約有50 t,作為通用產品70 t,在中國分別為l 350 t和470 t。其中,諾氟沙星、環丙沙星和氧氟沙星的生產量最大[5]。而抗生素進入人或動物體內后40%~90%以母體或代謝物的形式隨畜禽糞便進入環境[6]。2010年,在中國排放到環境中畜禽糞便的量達45億t。環境調查發現,FQs抗生素在水體、沉積物、土壤等多種環境介質中都有檢出[7-8]。在一些養殖場周圍的水體和土壤中,抗生素含量可達到異常高的水平[9-10]。目前,盡管國內外定期推出抗生素用藥使用原則,但尚無FQs抗生素的環境標準。研究表明,環境中抗生素可能導致生物毒性和致病菌產生抗藥性基因等環境風險和生態風險[11],因此,抗生素引起的環境污染引起人們的高度關注和重視,對FQs抗生素的環境污染現狀、環境行為和生態毒性日益成為環境科學的研究熱點。本文介紹了FQs抗生素在環境多介質中的污染現狀,綜述了它們的環境行為和生態毒理研究進展。

圖1 氟喹諾酮類抗生素的分子結構Fig. 1 The molecular structure of the fluoroquinolone antibiotics

1 FQs抗生素污染(FQs antibiotics pollution)

1.1 水體FQs抗生素污染

不同水環境(污水處理廠、醫院廢水、養殖廢水、地表水、地下水、飲用水)中FQs抗生素種類及污染水平見表1。由表1可知,水環境中FQs抗生素以諾氟沙星、環丙沙星、氧氟沙星污染較為普遍,其濃度也較高。FQs抗生素在污廢水中的殘留量與污水的來源和特性有關,污水處理廠、醫院污水、養殖廢水中抗生素含量較高,濃度在μg·L-1級。如在美國在醫院廢水中檢出氧氟沙星的濃度達25.5~35.5 μg·L-1[12]。各地不同污水處理廠中FQs抗生素濃度差異很大,濃度范圍在0.013~13.625 μg·L-1之間。與污水相比,地表水和地下水中抗生素含量相對較低(濃度在ng·L-1級)。一般污水處理廠的抗生素去除效率在60%到90%,因此,盡管城市污水大部分進入污水處理系統,也可能存在抗生素對地表水、飲用水源和地下水污染[13]。

1.2 土壤/沉積物中FQs抗生素的污染

表2列出了不同地區土壤/沉積物中FQs抗生素的污染水平。由表2可以看出,不同國家和地區土壤/沉積物中FQs抗生素的種類和污染水平存在差異,這與抗生素的用量、畜禽糞肥的施用量、環境條件等差異相關[39]。土壤/沉積物中FQs抗生素以諾氟沙星、環丙沙星、恩諾沙星、氧氟沙星污染為主,含量在μg·kg-1~mg·kg-1數量級范圍。如在西班牙Morales-Muoz等[40]檢測到土壤中高濃度FQs抗生素,在施用糞肥的2處土壤中諾氟沙星濃度分別為6.2 mg·kg-1和9.8 mg·kg-1,環丙沙星的濃度分別為3 mg·kg-1和5.8 mg·kg-1。在瑞士Golet等[41]檢測到土壤中環丙沙星的濃度為1.96 mg·kg-1。中國山東省中北部和珠江三角洲菜地土壤中檢出諾氟沙星的最高濃度分別為288.3 μg·kg-1和150.2 μg·kg-1,環丙沙星的最高檢出濃度分別為651.6 μg·kg-1和119.8 μg·kg-1[42-43]。與其他環境介質相比,污泥中FQs抗生素的污染更重,中國污泥中氧氟沙星殘留濃度高達21 mg·kg-1[44],其他國家FQs在污泥中檢出濃度在0.04~8.3 mg·kg-1范圍內。在畜禽糞便中,Zhao等[45]檢測到我國豬糞中恩諾沙星濃度為33.26 mg·kg-1,環丙沙星濃度為33.98 mg·kg-1。可見,我國土壤/沉積物中FQs抗生素污染相對較嚴重。

表1 水體中氟喹諾酮類抗生素的污染水平Table 1 The concentrations of fluoroquinolone antibiotics in water

表2 土壤/沉積物中氟喹諾酮類抗生素的污染水平Table 2 The concentrations of fluoroquinolone antibiotics in soils and sediments

2 FQs抗生素的環境行為(Environmental behaviorsof FQs antibiotics)

FQs抗生素按用途分為人用和獸用兩類。環境中FQs抗生素主要來源于工業排放、醫院排放、廢物垃圾、畜禽排泄、水產養殖等,進入環境中的抗生素經過吸附、遷移、轉化、降解(光解、水解和生物降解)等過程在土壤、水和沉積物等環境介質間再分配。圖2 環境中FQs抗生素的來源和遷移途徑示意圖。

圖2 環境中氟喹諾酮類抗生素的來源和遷移Fig. 2 Sources and pathways of fluoroquinolone antibiotics in environment

2.1 環境中FQs的吸附

抗生素進入土壤途徑主要包括施用含有抗生素的糞肥、污泥和含抗生素的污水灌溉[58-59]。進入土壤中的抗生素可通過吸附作用停留在土壤中,而影響其吸附的主要因素有土壤礦物質、有機質、多價態金屬陽離子及污泥等。FQs抗生素容易在土壤表層積累,向下層土的遷移很弱,這與-COOH對FQs抗生素吸附的貢獻較大有關[60-63];喹諾酮類抗生素吸附系數(Kd)值較大,吸附能力較強,易在土壤中蓄積[64]。土壤對恩諾沙星具有較強的吸附作用,其中青紫泥田和黃泥砂田的Kd值較高, 分別在3 694~5 546 L·kg-1和3 800~4 696 L·kg-1之間,殘留在土壤中的低量恩諾沙星主要被吸附在固體顆粒上,不易釋放和隨水遷移[65]。一些多價態金屬陽離子是影響部分抗生素吸附行為的重要因素。FQs抗生素能和金屬離子(Ca2+、Mg2+、Fe3+或Al3+)形成絡合物,使其在環境介質中較穩定存在[66]。水體和污水處理中的FQs抗生素也可以通過污泥吸附的方式去除。FQs從廢水中轉移到活性污泥中,從而達到去除目的[67],環丙沙星通過污泥吸附去除率也達到60%[68]。

2.2 環境中FQs的降解

降解是環境抗生素重要的代謝途徑,包括光解、水解和生物降解。FQs抗生素在環境介質中主要發生光解和生物降解等降解過程,很難發生水解作用[69-70]。

FQs抗生素屬光降解敏感型,主要降解產物包括10多種有機物及F-和HCOO-等離子。FQs的光解路徑依賴于母體結構,對于哌嗪環N4-烷基取代的FQs,N4-烷基脫除為最主要的光解路徑,而對于N4-H結構的FQs,光導致脫羧和羥基化脫氟為重要的光解反應路徑[71-72]。FQs通過母體萘啶環上取代基的脫除而生成中間產物,易進入發光菌的細胞而產生毒性[73-74]。Yuan等[75]研究發現環丙沙星在一定紫外光強下的降解產物對費氏弧菌的毒性比母體化合物更強。表3列出了不同環境介質中FQs抗生素光解的半衰期。由表3可以看出,光解是地表水中的FQs抗生素主要降解方式[76-77],但降解過程緩慢,導致在環境中的殘留時間比較久。沉積物中FQs的光解只發生在沉積物表層[78],且相當緩慢。而土壤中吸附的FQs抗生素充分暴露于自然光下,能很好地促使它們降解[79]。Sturini等[80]研究了土壤中2種FQs抗生素恩諾沙星和麻保沙星的光解作用,實驗結果表明,經過50 h后2種FQs的降解率達到80%。

表3 環境中氟喹諾酮類抗生素光解的半衰期Table 3 Half-life of fluoroquinolone antibiotics photolysis in environment

生物降解是抗生素在環境中降解的重要的途徑。被生物降解的抗生素,可能轉化為生物體的組成部分或是最終轉化為無機或有機小分子。FQs的生物降解主要是母體結構脫-H2O、-HF、-CO2等,打斷哌嗪取代基,產生一系列的降解產物。Ailette Prieto等[84]研究了白腐真菌對環丙沙星和諾氟沙星的降解過程,環丙沙星的降解產物為Cip-1(C15H17FN3O3), Cip-2(C13H12FN2O3), Cip-3(C17H19FN3O4), Cip-4(C17H17FN3O5)等。Alexy等[85]在密閉瓶中模擬18種抗生素的降解實驗表明,氧氟沙星的生物降解率較低僅為7.5%,而其它類抗生素如芐青霉素和金霉素則被完全降解。Boxall等[86]報道了喹諾酮類抗生素在糞便中的半衰期為100 d。

廢水處理中FQs的生物降解研究發現,FQs的生物降解<10%,幾乎可以忽略[87];而在活性污泥反應器中進行生物降解試驗,結果表明添加250 μg·kg-1的環丙沙星,2.5 d之后,去除率達50%[88];在硝化條件下,FQs生物降解的去除率達60%[89];Li和Zhang等[90]研究了污泥中環丙沙星、氧氟沙星、恩諾沙星的生物降解,48 h之后,去除率達40%。目前,研究者多認為,FQs的主要去除機制是活性污泥的吸附,而非生物降解[91-92,87]。

3 FQs抗生素的生態毒理(Ecological toxicologyof FQs antibiotics)

相對較低濃度的恩諾沙星殘留對土壤微生物群落多樣性的影響不明顯,而相對較高濃度的恩諾沙星殘留則降低了其微生物群落的多樣性,即藥物濃度越高,則土壤微生物多樣性就越低[93]。馬驛等[94]發現恩諾沙星藥物濃度大于或等于0.1 μg·kg-1可顯著降低土壤微生物的豐富度和多樣性,藥物濃度越高,土壤微生物的豐富度和多樣性就越低。顯然,FQs進入土壤環境中會導致土壤微生物多樣性的下降。

土壤呼吸作用反映了土壤微生物的總活性,可以用來作為監測土壤生態環境變化的重要指標[95]。諾氟沙星在濃度為小于1 mg·kg-1時,對土壤微生物呼吸都有一定的抑制作用,濃度大于5 mg·kg-1為激活作用,激活作用隨著處理濃度的增加而升高,恩諾沙星對呼吸的影響隨濃度變化變化先激活后抑制[96]。恩諾沙星殘留在土壤中作用達2~4 d 時,較低濃度的恩諾沙星對土壤呼吸作用有刺激作用,較高濃度則對其產生抑制作用[97]。王麗平等[98]也發現,低質量分數的恩諾沙星(0.1 mg·kg-1)可刺激土壤中微生物的生長和呼吸作用,而高質量分數的恩諾沙星(2~20 mg·kg-1)會抑制土壤微生物活性和有機碳的礦化。恩諾沙星還影響土壤微生物功能,進而對土壤特性和土壤呼吸作用、纖維分解作用、以及氨化作用等生態過程造成影響。研究還發現,恩諾沙星可顯著抑制土壤脫氫酶和磷酸酶的活性,抑制土壤微生物的呼吸強度和硝化作用,土壤微生物群落功能多樣性(基于Biolog方法)隨恩諾沙星濃度升高顯著降低[99]。可以推測抗生素對土壤微生物呼吸的激活作用,可能因為抗生素被某些微生物利用作為自身生長的碳源,促進微生物的生長,對微生物呼吸起到促進作用[100-101]。要明確抗生素對土壤微生物的影響機理,需要通過生理生化測定方法和分子生物學手段來分析測定更多的指標來綜合評價。

環境中抗生素殘留對植物的生態毒性效應的研究目前報道的還較少且主要集中在實驗室模擬條件下水生植物和陸生植物的毒性研究。Migliore等[102]研究表明低濃度恩諾沙星(50~100 μg·L-1)促進了香瓜、萵苣、蘿卜和菜豆的生長,高濃度則顯著抑制了這4種作物主根、胚軸、子葉的長度,降低了葉片數量,其中對根的抑制效果最明顯,這可能與FQs抗生素在植物根部的蓄積量有關,在根部蓄積量最多,因此表現出對根生長的抑制作用最為顯著。Boxall等[103]研究發現,土培條件下1 mg·kg-1恩諾沙星顯著抑制胡蘿卜和萵苣生長,而相同濃度的阿莫西林、磺胺嘧啶、泰樂素、甲氧芐啶和氟苯尼考等其生長影響不顯著。金彩霞等[104]采用室內生長箱培養方法,研究了環丙沙星對小麥、白菜和番茄種子發芽、根伸長、芽伸長的影響,結果表明,作物根伸長和芽伸長的抑制率隨著土壤中環丙沙星含量的增高而增大,兩者呈正相關(P< 0.05)。與根伸長和芽伸長抑制相比, 植物種子發芽對抗生素脅迫的敏感性較弱。

FQs抗生素對水生生物藥害作用較強[105]。不同抗生素對水生生物的半最大效應濃度(EC50,μg·L-1)影響有差異。表4列出了FQs抗生素對不同水生生物體的EC50,由表可知EC50介于μg·L-1~ mg·L-1之間。藍藻在水生生物體中最為敏銳,藻類和植物比無脊椎動物和魚較敏銳。FQs濃度較高時,會對生物體產生急性毒性,但是長期暴露在低濃度下產生的副作用也不容被忽視[106-107]。Martins等[108]實驗表明,長期暴露在低濃度的環丙沙星下會對Daphnia magna產生慢性損害。

FQs抗生素誘發水生動物的毒性,魚類對FQs抗生素的代謝過程中會產生一些具有親電子活性的中間產物,可能誘導生物體內抗氧化酶活性的變化,進而造成機體的氧化應激效應[109],導致機體代謝紊亂,引發其他疾病。有研究發現恩諾沙星會引起魚腦和肝臟內谷胱甘肽含量降低,過氧化氫酶和谷胱甘肽轉移酶活性發生變化,誘導魚體內脂質過氧化和神經功能障礙等疾病[109],并證實在鱸魚體內恩諾沙星主要是通過細胞色素代謝為環丙沙星,且恩諾沙星對細胞色素具有明顯的抑制作用[110]。

表4 氟喹諾酮類抗生素對水生物種的半最大效應濃度(EC50)Table 4 The concentration for 50% of maximal effect of fluoroquinolone antibiotics on aquatic species

抗生素種類繁多,降解和代謝產物復雜,近年來,研究者對抗生素的聯合毒性作用主要集中在四環素和磺胺類抗生素[119-121],對FQs抗生素研究甚少,環境中共存的FQs抗生素及其轉化產物之間的聯合毒性作用還有待進一步研究。

4 結論(Conclusion)

FQs抗生素作為環境中一類新型污染物,在環境中普遍存在,對人類健康和生態環境構成威脅。FQs抗生素水體含量在ng·L-1~μg·L-1之間,土壤/沉積物含量在μg·kg-1~mg·kg-1數量級,其中諾氟沙星、環丙沙星、恩諾沙星、氧氟沙星濃度相對較高。環境行為和生態毒理研究表明,FQs抗生素在環境介質中吸附能力較強,在環境中主要通過光解和生物降解等途徑降解;FQs抗生素污染導致土壤微生物的多樣性下降和微生物活性降低,抑制植物的生長發育,對水生生物產生生態毒性效應。FQs抗生素的環境風險應從環境多介質層面進行評估,同時應加強對生態毒性機理以及與其他環境污染物的聯合毒性效應研究。

[1] 汪昆平, 章琴琴, 郭勁松, 等. 環境中氟喹諾酮類抗生素殘留檢測和去除研究進展[J]. 安全與環境學報, 2012, 12(2): 104-110

Wang K P, Zhang Q Q, Xu Q Q, et al. Review of the determination of fluoroquinolones in the environment and its removal from the sewage [J]. Journal of Safety and Environment, 2012, 12(2): 104-110 (in Chinese)

[2] Lipsky B A, Baker C A. Fluoroquinolone toxicity profiles: A review focusing on newer agents [J]. Clinical Infectious Disease, 1999, 28(2): 352-364

[3] Hamad B. The antibiotics market [J]. Nature Reviews Drug Discovery, 2010, 9(9): 675-676

[4] World Health Organization. Use of quinolones in food animals and potential impact on human health [R]. Geneva: WHO, 1998: 2-5

[5] Sukul P, Spiteller M. Fluoroquinolone antibiotics in the environment [M]// Reviews of Environmental Contamination and Toxicology. New York: Springer, 2007: 131-162

[6] Boulanger B, Vargo J D, Schnoor J L, et al. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product [J]. Environmental Science & Technology, 2005, 39(15): 5524-5530

[7] Díaz-Cruz M S, Barceló D. Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2006, 386(4): 973-985

[8] Khetan S K, Collins T J. Human pharmaceuticals in the aquatic environment: A challenge to green chemistry [J]. Chemical Reviews, 2007, 107(6): 2319-2364

[9] Leung H W, Minh T B, Murphy M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China [J]. Environment International, 2012, 42: 1-9

[10] Gao L, Shi Y, Li W, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6): 665-671

[11] 管荷蘭, 于海鳳, 王嘉宇. 氟喹諾酮類抗生素在土壤中的歸趨及其生態毒性研究進展[J]. 生態學雜志, 2012, 31(12): 3228-3234

Guan H L, Yu H F, Wang J Y. Fate and ecological toxicity of fluoroquinolone antibiotics in soil: A review [J]. Chinese Journal of Ecology, 2012, 31(12): 3228-3234 (in Chinese)

[12] Brown K D, Kulis J, Thomson B, et al. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico [J]. Science of the Total Environment, 2006, 366(2): 772-783

[13] 陳濤. HPLC/MS/MS分析廣州和珠海污水處理廠廢水中多種抗生素污染研究[D]. 廣州: 暨南大學理工學院, 2010

Chen T. Research on a variety of antibiotics of wastewate treatment plants in Guangzhou and Zhuhai by HPLC/LC-MS analysis method [D]. Guangzhou: Jinan University, 2010 (in Chinese)

[14] Lee H B, Peart T E, Svoboda M L. Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2007, 1139(1): 45-52

[15] Lindberg R H, Wennberg P, Johansson M I, et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden [J]. Environmental Science & Technology, 2005, 39(10): 3421-3429

[16] Vieno N, Tuhkanen T, Kronberg L. Elimination of pharmaceuticals in sewage treatment plants in Finland [J]. Water Research, 2007, 41(5): 1001-1012

[17] Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment [J]. Marine Pollution Bulletin, 2005, 51(1-4): 218-223

[18] Zuccato E, Castiglioni S, Bagnati R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment [J]. Journal of Hazardous Materials, 2010, 179(1-3): 1042-1048

[19] Rosal R, Rodríguez A, Perdigón-Melón J A, et al. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation [J]. Water Research, 2010, 44(2): 578-588

[20] Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling [J]. Water Research, 2007, 41(18): 4164-4176

[21] Ghosh G, Okuda T, Yamashita N, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in Japan and their effects on bacterial ammonia oxidation [J]. Water Science and Technology, 2009, 59(4): 779-786

[22] Xu W, Zhang G, Li X, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Research, 2007, 41(19): 4526-4534

[23] Lindberg R, Jarnheimer P ?, Olsen B, et al. Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards [J]. Chemosphere, 2004, 57(10): 1479-1488

[24] Duong H A, Pham N H, Nguyen H T, et al. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam [J]. Chemosphere, 2008, 72(6): 968-973

[25] Chang X, Meyer M T, Liu X, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China [J]. Environmental Pollution, 2010, 158(5): 1444-1450

[26] Sim W J, Lee J W, Lee E S, et al. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures [J]. Chemosphere, 2011, 82(2): 179-186

[27] Zhou L J, Ying G G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China [J]. The Science of the Total Environment, 2013, 444: 183-195

[28] 陳永山, 章海波, 駱永明, 等. 典型規模化養豬場廢水中獸用抗生素污染特征與去除效率研究[J]. 環境科學學報, 2010, 30(11): 2205-2212

Chen Y S, Zhang H B, Luo Y M, et al. A preliminary study on the occurrence and dissipation of antibiotics in swine wastewater [J]. Acta Scientiae Circumstantiae, 2010, 30(11): 2205-2212 (in Chinese)

[29] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment [J]. Ecological Indicators, 2008, 8(1): 1-13

[30] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance [J]. Environmental Science & Technology, 2002, 36(6): 1202-1211

[31] Ginebreda A, Muoz I, de Alda M L, et al. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain) [J]. Environment International, 2010, 36(2): 153-162

[32] Castiglioni S, Fanelli R, Calamari D, et al. Methodological approaches for studying pharmaceuticals in the environment by comparing predicted and measured concentrations in River Po, Italy [J]. Regulatory Toxicology and Pharmacology, 2004, 39(1): 25-32

[33] 葉計朋, 鄒世春, 張干, 等. 典型抗生素類藥物在珠江三角洲水體中的污染特征[J]. 生態環境, 2007, 16(2): 384-388

Ye J P, Zou S C, Zhang G, et al. Characteristics of selected antibiotics in the aquatic environment of the Pearl River Delta, South China [J]. Ecology and Environment, 2007, 16(2): 384-388 (in Chinese)

[34] Hu X, Zhou Q, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China [J]. Environmental Pollution, 2010, 158(9): 2992-2998

[35] Xu W, Zhang G, Zou S, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China [J]. Water Environment Research, 2009, 81(3): 248-254

[36] Zou S, Xu W, Zhang R, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011, 159(10): 2913-2920

[37] 張川, 胡冠九, 孫成. UPLC-ESI-MS/MS法同時測定水中7種抗生素[J]. 環境監測管理與技術, 2009, 21(3): 37-40

Zhang C, Hu G J, Sun C. Simultaneous analysis of 7 antibioticsin water by ultra performance liquid chromatography-electrospray ionization-tandem massspectrometry [J]. The Administration and Technique of Environmental Monitoring, 2009, 21(3): 37-40 (in Chinese)

[38] Vieno N M, H?rkki H, Tuhkanen T, et al. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant [J]. Environmental Science & Technology, 2007, 41(14): 5077-5084

[39] Sarmah A K, Meyer M T, Boxall A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759

[40] Morales-Muoz S, Luque-García J L, Luque de Castro M D. Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples [J]. Journal of Chromatography A, 2004, 1059(1-2): 25-31

[41] Golet E M, Strehler A, Alder A C, et al. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction [J]. Analytical Chemistry, 2002, 74(21): 5455-5462

[42] Xie Y, Li X W, Wang J F, et al. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China [J]. Science of the Total Environment, 2012, 430: 126-131

[43] Li Y W, Wu X L, Mo C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta Area, Southern China [J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7268-7276

[44] Gao L, Shi Y, Li W, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6): 665-671

[45] Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China [J]. Science of the Total Environment, 2010, 408(5): 1069-1075

[46] Ferdig M, Kaleta A, Buchberger W. Improved liquid chromatographic determination of nine currently used (fluoro) quinolones with fluorescence and mass spectrometric detection for environmental samples [J]. Journal of Separation Science, 2005, 28(13): 1448-1456

[47] Zhou L J, Ying G G, Zhao J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China [J]. Environmental Pollution, 2011, 159(7): 1877-1885

[48] Gao L, Shi Y, Li W, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Haihe River in China [J]. Journal of Environmental Monitoring, 2012, 14(4): 1247-1254

[49] Spongberg A L, Witter J D. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio [J]. The Science of the Total Environment, 2008, 397(1): 148-157

[50] Golet E M, Xifra I, Siegrist H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil [J]. Environmental Science & Technology, 2003, 37(15): 3243-3249

[51] Lindberg R H, Wennberg P, Johansson M I, et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden [J]. Environmental Science & Technology, 2005, 39(10): 3421-3429

[52] Lindberg R H, Olofsson U, Rendahl P, et al. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge [J]. Environmental Science & Technology, 2006, 40(3): 1042-1048

[53] Xu W, Zhang G, Li X, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Research, 2007, 41(19): 4526-4534

[55] 邰義萍, 莫測輝, 吳小蓮, 等. 東莞市蔬菜基地土壤中喹諾酮類抗生素的污染特征研究[J]. 環境科學學報, 2011, 31(4): 839-845

Tai Y P, Mo C H, Wu X L, et al. Occurrence of quinolone antibiotics in soils from vegetable fields of Dongguan City [J]. Acta Scientiae Circumstantiae, 2011, 31(4): 839-845 (in Chinese)

[56] 劉鋒, 廖德潤, 李可, 等. 畜禽養殖基地磺胺類喹諾酮類和大環內酯類抗生素污染特征[J]. 農業環境科學學報, 2013, 32(4): 847-853

Liu F, Liao D R, Li K, et al. Pollution characteristics of the sulfonamides, quinolones and macrolides in the samples collected from livestock and poultry feedlots [J]. Journal of Agro-Environment Science, 2013, 32(4): 847-885 (in Chinese)

[57] Morales-Muoz S, Luque-García J L, Luque de Castro M D. Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples [J]. Journal of Chromatography A, 2004, 1059(1): 25-31

[58] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China [J]. Water Research, 2008, 42(1): 395-403

[59] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment [J]. Ecological Indicators, 2008, 8(1): 1-13

[60] Zhang J, Dong Y. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China [J]. Journal of Hazardous Materials, 2008, 151(2-3): 833-839

[61] Zhang H, Huang C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite [J]. Chemosphere, 2007, 66(8): 1502-1512

[62] Gu C, Karthikeyan K G. Interaction of tetracycline with aluminum and iron hydrous oxides [J]. Environmental Science & Technology, 2005, 39(8): 2660-2667

[63] Gu C, Karthikeyan K G, Sibley S D, et al. Complexation of the antibiotic tetracycline with humic acid [J]. Chemosphere, 2007, 66(8): 1494-1501

[64] Tolls J. Sorption of veterinary pharmaceuticals in soils: A review [J]. Environmental Science & Technology, 2001, 35(17): 3397-3406

[65] 王麗平, 章明奎, 鄭順安. 土壤中恩諾沙星的吸附/解吸特性和生物學效應[J]. 土壤通報, 2008, 39(2): 393- 397

Wang L P, Zhang M K, Zheng S A. Adsorption- desorption characteristics and biological effects of enrofloxacin in agricultural soils [J]. Journal of Soil Science, 2008, 39(2): 393- 397 (in Chinese)

[66] Seifrtová M, Nováková L, Lino C, et al. An overview of analytical methodologies for the determination of antibiotics in environmental waters [J]. Analytica Chimica Acta, 2009, 649(2): 158-179

[67] Lindberg R H, Olofsson U, Rendahl P, et al. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge [J]. Environmental Science & Technology, 2006, 40(3): 1042-1048

[68] Castiglioni S, Bagnati R, Fanelli R, et al. Removal of pharmaceuticals in sewage treatment plants in Italy [J]. Environmental Science & Technology, 2006, 40(1): 357-363

[69] Halling-S?rensen B. Algal toxicity of antibacterial agents used in intensive farming [J]. Chemosphere, 2000, 40(7): 731-739

[70] Kümmerer K. Antibiotics in the aquatic environment-A review-part I [J]. Chemosphere, 2009, 75(4): 417-434

[71] 葛林科. 水中溶解性物質對氯霉素類和氟喹諾酮類抗生素光解的影響[D]. 大連: 大連理工大學, 2009

Ge L K. Effects of aqueous dissolved matter on photodegradation of phenicol and fluoroquinolone antibiotics [D]. Dalian: Dalian University of Technology, 2009 (in Chinese)

[72] Wammer K H, Korte A R, Lundeen R A, et al. Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin [J]. Water Research, 2013, 47(1): 439-448

[73] Jiao S, Zheng S, Yin D, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria [J]. Chemosphere, 2008, 73(3): 377-382

[74] Lu G H, Zhao Y H, Yang S G, et al. Quantitative structure-biodegradability relationships of substituted benzenes and their biodegradability in river water [J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(1): 111-116

[75] Yuan F, Hu C, Hu X, et al. Photodegradation and toxicity changes of antibiotics in UV and UV/H(2)O(2) process [J]. Journal of Hazardous Materials, 2011, 185(2-3): 1256-1263

[77] Ge L, Chen J, Wei X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents [J]. Environmental Science & Technology, 2010, 44(7): 2400-2405

[78] Xu W H, Zhang G, Wai O W H, et al. Transport and adsorption of antibiotics by marine sediments in a dynamic environment [J]. Journal of Soils and Sediments, 2009, 9(4): 364-373

[79] Speltini A, Sturini M, Maraschi F, et al. Analytical methods for the determination of fluoroquinolones in solid environmental matrices [J]. TrAC Trends in Analytical Chemistry, 2011, 30(8): 1337-1350

[80] Sturini M, Speltini A, Maraschi F, et al. Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials marbofloxacin and enrofloxacin [J]. Chemosphere, 2012, 86(2): 130-137

[81] Lai H T, Lin J J. Degradation of oxolinic acid and flumequine in aquaculture pond waters and sediments [J]. Chemosphere, 2009, 75(4): 462-468

[82] Knapp C W, Cardoza L A, Hawes J N, et al. Fate and effects of enrofloxacin in aquatic systems under different light conditions [J]. Environmental Science & Technology, 2005, 39(23): 9140-9146

[83] 吳銀寶, 汪植三, 廖新悌, 等. 恩諾沙星在雞體中的排泄及其在雞糞中的降解[J]. 畜牧獸醫學報, 2005, 6(10): 1069-1074

Wu Y B, Wang Z S, Liao X D, et al. Study on the excretion of enrofloxacin in chicken and its degradation in chicken feces [J]. Acta Veterinaria et Zootechnica Sinica, 2005, 6(10): 1069-1074 (in Chinese)

[84] Prieto A, M?der M, Rodil R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products [J]. Bioresource Technology, 2011, 102(23): 10987-10995

[85] Alexy R, Kümpel T, Kümmerer K. Assessment of degradation of 18 antibiotics in the closed bottle test [J]. Chemosphere, 2004, 57(6): 505-512

[86] Boxall A B A, Fogg L A, Blackwell P A, et al. Veterinary medicines in the environment [M]//Reviews of Environmental Contamination and Toxicology. New York: Springer, 2004: 1-91

[87] Jia A, Wan Y, Xiao Y, et al. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant [J]. Water Research, 2012, 46(2): 387-394

[88] Halling-S?rensen B, Lützh?ft H C H, Andersen H R, et al. Environmental risk assessment of antibiotics: Comparison of mecillinam, trimethoprim and ciprofloxacin [J]. Journal of Antimicrobial Chemotherapy, 2000, 46(s1): 53-58

[89] Dorival-García N, Zafra-Gómez A, Navalón A, et al. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions [J]. Journal of Environmental Management, 2013, 120: 75-83

[90] Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activated sludge process [J]. Environmental Science & Technology, 2010, 44(9): 3468-3473

[91] Conkle J L, Lattao C, White J R, et al. Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil [J]. Chemosphere, 2010, 80(11): 1353-1359

[92] Golet E M, Xifra I, Siegrist H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil [J]. Environmental Science & Technology, 2003, 37(15): 3243-3249

[93] 王加龍, 劉堅真, 陳杖榴, 等. 恩諾沙星殘留對土壤微生物數量及群落功能多樣性的影響[J]. 應用與環境生物學報, 2005, 11(1): 86-89

Wang J L, Liu J Z, Chen Z L. Effects of enrofioxacin residue on number and community function diversity of soil microbes [J]. Chinese Journal of Applied & Environmental Biology, 2005, 11(1): 86-88 (in Chinese)

[94] 馬驛, 陳杖榴, 曾振靈. 恩諾沙星對土壤微生物群落功能多樣性的影響[J]. 生態學報, 2007, 27(8): 3400-3406

Ma Y, Chen Z L, Zeng Z L. Effects of enrofloxacin on functional diversity of soil microbial communities [J]. Acta Ecologica Sinica, 2007, 27(8): 3400-3406 (in Chinese)

[95] 劉鋒, 應光國, 周啟星, 等. 抗生素類藥物對土壤微生物呼吸的影響[J]. 環境科學, 2009, 30(5): 1280-1285

Liu F, Ying Y G, Zhou Q X, et al. Effects of antimicrobial drugs on soil microbial respiration [J]. Environmental Science, 2009, 30(5): 1280-1285 (in Chinese)

[96] 王金花, 朱魯生, 王軍, 等. 4種典型抗生素對土壤微生物呼吸的影響[J]. 農業環境科學學報, 2012, 30(11): 2232-2236

Wang J H, Zhu L S, Wang J, et al. Effects of four typical antibiotics on soil microbial respiration [J]. Journal of Agro-Environment Science, 2012, 30(11): 2232-2236 (in Chinese)

[97] 王加龍, 劉堅真, 陳杖榴, 等. 恩諾沙星殘留對土壤微生物功能的影響[J]. 生態學報, 2005, 25(2): 279-282

Wang J L, Liu J Z, Chen Z L, et al. Effects of enrofloxacin residues on the functions of soil microbes [J]. Acta Ecologica Sinica, 2005, 25(2): 279-282 (in Chinese)

[98] 王麗平, 章明奎, 鄭順安. 土壤中恩諾沙星的吸附-解吸特性和生物學效應[J]. 土壤通報, 2008, 39(2): 393-397

Wang L P, Zhang M X, Zheng S A. Adsorption-desorption characteristics and biological effects of enrofloxacin in agricultural soils [J]. Chinese Journal of Soil Science, 2008, 39(2): 393-397 (in Chinese)

[99] Kong W D, Zhu Y G, Fu B J, et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community [J]. Environmental Pollution, 2006, 143(1): 129-137

[100] 董璐璽, 謝秀杰, 周啟星, 等. 新型環境污染物抗生素的分子生態毒理研究進展[J]. 生態學雜志, 2010, 29(10): 2042-2048

Dong L X, Xie X J, Zhou Q X, et al. Molecular ecotoxicology of antibiotics an emerging type of environmental contaminants: A review [J]. Chinese Journal of Ecology, 2010, 29(10): 2042-2048 (in Chinese)

[101] 金彩霞, 劉軍軍, 陳秋穎, 等. 獸藥磺胺間甲氧嘧啶對土壤呼吸及酶活性的影響[J]. 農業環境科學學報, 2010, 29(2): 314-318

Jin C X, Liu J J, Chen Q Y, et al. Effects of sulfamonomethoxine on soil respiration and enzyme activity [J]. Journal of Agro-Environment Science, 2010, 29(2): 314-318 (in Chinese)

[102] Migliore L, Cozzolino S, Fiori M. Phytotoxicity to and uptake of enrofloxacin in crop plants [J]. Chemosphere, 2003, 52(7): 1233-1244

[103] Boxall A B A, Johnson P, Smith E J, et al. Uptake of veterinary medicines from soils into plants [J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2288-2297

[104] 金彩霞, 陳秋穎, 劉軍軍, 等. 兩種常用獸藥對作物發芽的生態毒性效應[J]. 環境科學學報, 2009, 29(3): 619-625

Jin C X, Chen Q Y, Liu J J, et al. The eco-toxicological effect of two common veterinary drugs on crop germination [J]. Acta Scientiae Circumstantiae, 2009, 29(3): 619-625 (in Chinese)

[105] Robinson A A, Belden J B, Lydy M J. Toxicity of fluoroquinolone antibiotics to aquatic organisms [J]. Environmental Toxicology and Chemistry, 2005, 24(2): 423-430

[106] Fent K, Weston A A, Caminada D. Ecotoxicology of human pharmaceuticals [J]. Aquatic Toxicology, 2006, 76(2): 122-159

[107] Santos L H, Araújo A N, Fachini A, et al. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment [J]. Journal of Hazardous Materials, 2010, 175(1-3): 45-95

[108] Martins N, Pereira R, Abrantes N, et al. Ecotoxicological effects of ciprofloxacin on freshwater species: Data integration and derivation of toxicity thresholds for risk assessment [J]. Ecotoxicology, 2012, 21(4): 1167-1176

[109] Wang N, Noemie N, Hien N N, et al. Adverse effects of enrofloxacin when associated with environmental stress in Tra catfish (Pangasianodon hypophthalmus) [J]. Chemosphere, 2009, 77(11): 1577-1584

[110] Vaccaro E, Giorgi M, Longo V, et al. Inhibition of cytochrome P450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax) [J]. Aquatic Toxicology, 2003, 62(1): 27-33

[111] Robinson A A, Belden J B, Lydy M J. Toxicity of fluoroquinolone antibiotics to aquatic organisms [J]. Environmental Toxicology and Chemistry, 2005, 24(2): 423-430

[112] Halling-S?rensen B, Lützh?ft H C H, Andersen H R, et al. Environmental risk assessment of antibiotics: Comparison of mecillinam, trimethoprim and ciprofloxacin [J]. Journal of Antimicrobial Chemotherapy, 2000, 46(s1): 53-58

[113] Nie X, Gu J, Lu J, et al. Effects of norfloxacin and butylated hydroxyanisole on the freshwater microalga Scenedesmus obliquus [J]. Ecotoxicology, 2009, 18(6): 677-684

[114] Brain R A, Johnson D J, Richards S M, et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test [J]. Environmental Toxicology and Chemistry, 2004, 23(2): 371-382

[115] Yang L H, Ying G G, Su H C, et al. Growth-inhibiting effects of twelve antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata [J]. Environmental Toxicology and Chemistry, 2008, 27(5): 1201-1208

[116] Lützh?ft H C H, Halling-S?rensen B, J?rgensen S E. Algal toxicity of antibacterial agents applied in Danish fish farming [J]. Archives of Environmental Contamination and Toxicology, 1999, 36(1): 1-6

[117] Ebert I, Bachmann J, Kühnen U, et al. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms [J]. Environmental Toxicology and Chemistry, 2011, 30(12): 2786-2792

[118] Kim J, Park J, Kim P G, et al. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna [J]. Ecotoxicology, 2010, 19(4): 662-669

[119] Eguchi K, Nagase H, Ozawa M, et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae [J]. Chemosphere, 2004, 57(11): 1733-1738

[120] Zou X, Lin Z, Deng Z, et al. The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: Differences between the acute and chronic mixture toxicity mechanisms [J]. Chemosphere, 2012, 86(1): 30-35

[121] De Liguoro M, Fioretto B, Poltronieri C, et al. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim [J]. Chemosphere, 2009, 75(11): 1519-1524

A Review on Environmental Behaviors and Ecotoxicology of Fluoroquinolone Antibiotics

Meng Lei, Yang Bing, Xue Nandong*

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

18 November 2014 accepted 7 January 2015

Fluoroquinolone antibiotics (FQs) were the broad-spectrum antibacterial drugs which were widely applied in livestock and poultry breeding industry to treat bacterial infection. The pollution of FQs in environment has been widely concerned. Environmental behaviors such as adsorption and desorption in water and soil/sediment and ecotoxicology of FQs were summarized in the paper. It is suggested that environmental behaviors and risk of FQs should be assessed at the level of environmental multimedia. More study should be conducted on ecological toxicity mechanism of FQs as well as on effects of the joint toxicity with other environmental pollutants.

fluoroquinolone; antibiotics; pollution situation; environmental behaviors; adsorption and desorption; ecotoxicology

國家高技術研究發展計劃(863)項目(2012AA06A304)

孟磊(1987-),女,碩士,研究方向為土壤中有機污染物環境化學行為,E-mail: zimin616@163.com;

*通訊作者(Corresponding author), E-mail: xuend@craes.org.cn

10.7524/AJE.1673-5897.20141118006

2014-11-18 錄用日期:2015-01-07

1673-5897(2015)2-76-13

X171.5

A

薛南冬(1964-),男,理學博士,研究員,主要研究方向為土壤有機物污染及其環境修復,土壤化學品污染與控制等,發表學術論文90余篇。

孟磊, 楊兵, 薛南冬. 氟喹諾酮類抗生素環境行為及其生態毒理研究進展[J]. 生態毒理學報, 2015, 10(2): 76-88

Meng L, Yang B, Xue N D. A review on environmental behaviors and ecotoxicology of fluoroquinolone antibiotics [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 76-88 (in Chinese)

猜你喜歡
污染環境
長期鍛煉創造體內抑癌環境
什么是污染?
一種用于自主學習的虛擬仿真環境
什么是污染?
孕期遠離容易致畸的環境
不能改變環境,那就改變心境
堅決打好污染防治攻堅戰
當代陜西(2019年7期)2019-04-25 00:22:18
環境
孕期遠離容易致畸的環境
堅決打好污染防治攻堅戰
主站蜘蛛池模板: 国产精品视频公开费视频| 欧洲亚洲一区| 精品视频91| 国产真实二区一区在线亚洲| 国产精品久久久久鬼色| 91亚洲国产视频| 亚洲av无码牛牛影视在线二区| 黄色网页在线播放| 在线观看欧美国产| 激情视频综合网| 久久久久久久蜜桃| 97人人模人人爽人人喊小说| 国产一区二区三区日韩精品| 国产综合网站| 久久一级电影| 精品成人免费自拍视频| 高清无码一本到东京热| 夜色爽爽影院18禁妓女影院| 四虎影院国产| 亚洲国产一成久久精品国产成人综合| a在线亚洲男人的天堂试看| 中文一区二区视频| 国产00高中生在线播放| 国产在线八区| 71pao成人国产永久免费视频| 国产欧美日韩va| 国产va在线观看免费| 中文字幕亚洲专区第19页| 蜜臀av性久久久久蜜臀aⅴ麻豆 | 久久久久亚洲AV成人网站软件| 91色在线视频| 日韩精品成人在线| 啦啦啦网站在线观看a毛片| 在线看国产精品| 国产爽爽视频| 日韩毛片基地| 一级片一区| 国产喷水视频| 亚洲精品国产首次亮相| 欧洲极品无码一区二区三区| 亚洲品质国产精品无码| 国产在线欧美| 亚洲日韩精品欧美中文字幕| 日韩不卡免费视频| 亚洲国语自产一区第二页| 麻豆精品在线| 成年网址网站在线观看| 免费看av在线网站网址| 久久久黄色片| 成人永久免费A∨一级在线播放| 99草精品视频| 国产成人综合在线观看| 久久久噜噜噜| 国内嫩模私拍精品视频| 亚洲美女AV免费一区| 欧美色综合网站| 高清久久精品亚洲日韩Av| 久久久久亚洲AV成人网站软件| 中文字幕无码电影| 亚洲精品无码抽插日韩| 不卡午夜视频| 成人国产精品2021| 亚洲 欧美 中文 AⅤ在线视频| 韩日无码在线不卡| 9久久伊人精品综合| www.亚洲一区| 国产高清国内精品福利| 午夜国产大片免费观看| 国产特一级毛片| 久久久久亚洲AV成人人电影软件| 色首页AV在线| 欧美午夜小视频| 97se亚洲综合不卡| 99re精彩视频| 国产一级毛片网站| 99re精彩视频| 黄色一级视频欧美| 亚洲精品在线观看91| 亚洲综合亚洲国产尤物| 青青久久91| 国产SUV精品一区二区6| 精品撒尿视频一区二区三区|