宋高鵬,申新田,李素梅,黎奕斌,范繼鴻,梁倩倩,劉叔文
(1.華南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,廣東 廣州 510642;2.南方醫(yī)科大學(xué)藥學(xué)院,廣東 廣州 510515;3.暨南大學(xué)醫(yī)學(xué)院,廣東 廣州 510632)
馬鈴薯三糖五環(huán)三萜類(lèi)化合物體外抗H5N1流感病毒的活性評(píng)價(jià)
宋高鵬1,申新田2,李素梅3,黎奕斌1,范繼鴻1,梁倩倩1,劉叔文2
(1.華南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,廣東 廣州 510642;2.南方醫(yī)科大學(xué)藥學(xué)院,廣東 廣州 510515;3.暨南大學(xué)醫(yī)學(xué)院,廣東 廣州 510632)
H5N1;流感病毒進(jìn)入抑制劑;合成;血凝素蛋白;構(gòu)效關(guān)系;五環(huán)三萜
自1997年香港首次爆發(fā)了人感染高致病性H5N1禽流感事件以來(lái),禽流感疫情已經(jīng)在世界范圍內(nèi)常態(tài)化,各地先后出現(xiàn)了人感染H5N1禽流感病例[1]。人感染H5N1禽流感死亡率達(dá)到60%,遠(yuǎn)遠(yuǎn)高于SARS等突發(fā)性傳染病[2]。最新研究表明,H5N1型禽流感病毒已演化出兩個(gè)能感染人類(lèi)的毒株,而且兩個(gè)毒株都有引發(fā)嚴(yán)重人傳人流感疫情的危險(xiǎn)[3-5]。這表明,所有的H5N1型禽流感病毒毒株都應(yīng)被視為“公共衛(wèi)生的潛在威脅”。
目前市場(chǎng)上的兩大類(lèi)抗流感病毒藥物(以金剛烷胺為代表的M2蛋白抑制劑和以達(dá)菲為代表的神經(jīng)氨酸酶NA抑制劑)的廣泛應(yīng)用已導(dǎo)致H5N1流感病毒對(duì)其產(chǎn)生了耐藥性[6-8]。病毒感染宿主細(xì)胞的第一個(gè)過(guò)程是病毒表面的血凝素蛋白HA與宿主細(xì)胞表面的唾液酸受體識(shí)別結(jié)合[9]。因此,抑制HA介導(dǎo)的病毒融合或抑制病毒進(jìn)入宿主細(xì)胞對(duì)抑制流感病毒的傳染至關(guān)重要[10-11]。本課題組此前采用H5N1假病毒實(shí)驗(yàn)方法篩選皂苷化合物庫(kù),發(fā)現(xiàn)了一個(gè)新系列的H5N1進(jìn)入抑制劑[12]。研究發(fā)現(xiàn),馬鈴薯三糖薯蕷皂苷衍生物(1)對(duì)兩種假H5N1亞型禽流感病毒H5N1 (A/Viet Nam/1203/2004)和H5N1 (Goose/Qinghai/59/05)的血凝素蛋白在體外均具有較強(qiáng)的抑制作用,其IC50分別為7.8 及7.2 μmol·L-1[12]。初步構(gòu)效關(guān)系研究發(fā)現(xiàn),先導(dǎo)化合物1結(jié)構(gòu)中的馬鈴薯三糖為活性必需片段,用其它三糖替換或簡(jiǎn)化成二糖片段均導(dǎo)致抗病毒活性的下降[12-13]。五環(huán)三萜主要包括齊墩果烷型、烏蘇烷型及羽扇豆烷型等三種類(lèi)型,其對(duì)多種病毒均具有較強(qiáng)的抑制活性,為開(kāi)發(fā)抗病毒藥物提供了新的結(jié)構(gòu)骨架[14-17]。本論文基于“拼合原理”,將先導(dǎo)化合物1結(jié)構(gòu)中的活性片段“馬鈴薯三糖”與三種不同類(lèi)型的五環(huán)三萜甘草次酸乙酯、熊果酸乙酯及樺木酸乙酯等通過(guò)“氧苷鍵”分別進(jìn)行偶聯(lián)設(shè)計(jì),合成目標(biāo)化合物1a-1c,結(jié)構(gòu)式見(jiàn)Fig 1。
1.1 儀器與試藥Genios Pro型Tecan酶標(biāo)儀(Tecan),Nikon倒置顯微鏡(Nikon),CO2恒溫培養(yǎng)箱(Thermo),-80 ℃超低溫保存箱(Thermo),GS-15R型臺(tái)式低溫高速離心機(jī)(Beckman),生物安全柜class Ⅱ (ESCO),U-3031型紫外分光光度儀,BP211D十萬(wàn)分之一電子天平(Sartorius),Milli-Q超純水器(Millipore),自動(dòng)高壓消毒鍋(Sanyo),Eppendorf 離心機(jī)5810(Eppendorf),Thermo Mixmate(Thermo),NMR 用600 Mz核磁共振儀(美國(guó) Varian)測(cè)定;MS用Waters Quattro Premier XE 質(zhì)譜儀測(cè)定。
DMEM細(xì)胞培養(yǎng)基、胎牛血清、胰蛋白酶、青霉素及鏈霉素購(gòu)自中國(guó)Invitrogen 公司;感受態(tài)細(xì)胞DH5α購(gòu)自TaKaRa 公司。熒光素酶檢測(cè)試劑盒購(gòu)自Promega公司。聚乙稀亞胺(PEI)轉(zhuǎn)染試劑購(gòu)自上海起福生物公司。反應(yīng)試劑購(gòu)自阿拉丁或者北京偶合科技有限公司,其它所有試劑均為市售分析純,柱層析硅膠使用青島海洋化工廠(chǎng)的柱層析硅膠(200~300 目)。
1.2 化合物的合成目標(biāo)化合物1a-1c的合成路線(xiàn)見(jiàn)Fig 2。在碳酸鉀催化作用下,商品化的原料甘草次酸、熊果酸及樺木酸分別與溴乙烷進(jìn)行酯化反應(yīng)得到用乙基(Et)保護(hù)的中間體2a-2c。中間體2a-2c作為糖基受體與糖基給體即全苯甲酰基(Bz)保護(hù)的D-葡萄糖三氯亞胺脂[18],在TMSOTf催化作用下進(jìn)行糖苷化反應(yīng)得到糖苷化產(chǎn)物3a-3c。用甲醇鈉將中間體3a-3c結(jié)構(gòu)中的Bz脫除得到中間體4a-4c,接著用1-BBTZ區(qū)域選擇性保護(hù)其D-葡萄糖的C-3與C-6羥基,得到中間體5a-5c。利用“反加法”,糖基受體5a-5c與全乙酰基(Ac)保護(hù)的L-鼠李糖糖基給體[19]在TMSOTf作用下進(jìn)行雙糖糖苷化,在D-葡萄糖的C-2與C-4羥基同時(shí)引入全Ac保護(hù)的L-鼠李糖得到三糖中間體,最后用甲醇鈉/甲醇將三糖中間體的Ac與Bz同時(shí)脫除得到目標(biāo)化合物1a-1c。
1.2.1 化合物2a-2c的制備 將商品化的原料甘草次酸1.00 g (2.2 mmol)溶于無(wú)水DMF(30 mL)中,然后加入碳酸鉀0.61 g (4.4 mmol),室溫下攪拌4 h后加入對(duì)溴乙烷0.66 mL (8.8 mmol)。該反應(yīng)液在室溫下繼續(xù)攪拌反應(yīng)12 h,減壓蒸去溶劑,將剩余物溶解于150 mL乙酸乙酯中,然后依次用水(50 mL×3)、飽和碳酸氫鈉溶液(50 mL×3)和飽和NaCl溶液(80 mL)洗滌,有機(jī)相用無(wú)水Na2SO4干燥后濃縮,經(jīng)無(wú)水乙醇重結(jié)晶得1.18 g白色固體2a (92.5%)。化合物2b與2c的制備可參照化合物2a的制備。
1.2.2 化合物3a-3c的制備 將化合物2a 1.50 g (3.1 mmol)、2,3,4,6-四-O-苯甲酰基-α-D-葡萄糖三氯亞胺酯[18]3.44 g (4.80 mmol) 、活化后的4℃分子篩粉末和干燥的CH2Cl2(60 mL) 混合,氮?dú)獗Wo(hù)下室溫下攪拌0.5 h后降溫至-10℃,加入TMSOTf 56 μL (0.31 mmol)。0℃反應(yīng)0.5 h后,室溫繼續(xù)反應(yīng)0.5 h,然后用三乙胺終止反應(yīng)。濾除分子篩粉末,濾液濃縮后經(jīng)硅膠柱純化(乙酸乙酯-石油醚=1 ∶6) 得3.05 g白色固體3a (92.7%)。按上述方法可制備化合物3b與3c。

Fig 1 Structures of the target compounds

Fig 2 Synthesis route of the target compounds 1a-1c
1.2.3 化合物4a-4c的制備 將化合物3a 2.55 g (2.4 mmol)溶于CH3OH-CH2Cl2(1 ∶1, 100 mL),加入催化量的甲醇鈉調(diào)pH=10。室溫?cái)嚢? h后,用陽(yáng)離子樹(shù)脂 (H+)中和反應(yīng)液至中性,濾除固體顆粒,濃縮后經(jīng)硅膠柱純化(二氯甲烷-甲醇=10 ∶1) 得1.48 g白色固體4a (95.5%)。化合物4b與4c的制備如上述所示。
1.2.4 化合物5a-5c的制備 將化合物4a 1.20 g(1.9 mmol)和1-(苯甲酰基)苯并三唑1.80 g (10.4 mmol)溶于干燥的CH2Cl2(60 mL)中,加入三乙胺1.60 mL(18.0 mmol)后室溫反應(yīng)36 h。TLC顯示原料完全消失,減壓濃縮后經(jīng)硅膠柱純化(乙酸乙酯-石油醚=1 ∶3) 得1.17 g白色固體5a (73.6%)。按上述方法可制備化合物5b與5c。
為了調(diào)查結(jié)果能充分反映西安市售水產(chǎn)品中甲醛本底值,試驗(yàn)擴(kuò)大采樣范圍和采樣數(shù)量,以保證取樣的全面性。所采集樣品涉及鮮活水產(chǎn)品和水產(chǎn)加工品,其中鮮活水產(chǎn)品包括魚(yú)類(lèi)、貝類(lèi)、蝦類(lèi)、蟹類(lèi)等,存在狀態(tài)主要以鮮活為主,部分以冰凍狀態(tài)存在;水產(chǎn)加工品主要為魷魚(yú)絲和凍蝦仁。采集樣品具體包括32種52個(gè)魚(yú)類(lèi)樣品、6種31個(gè)蝦類(lèi)樣品、3種7個(gè)蝦類(lèi)樣品、2種7個(gè)魷魚(yú)類(lèi)樣品及其他3個(gè)水產(chǎn)樣品,共計(jì)100個(gè)水產(chǎn)樣品中。所有樣品購(gòu)買(mǎi)于西安市各商場(chǎng)或市場(chǎng),均經(jīng)過(guò)嚴(yán)格監(jiān)控,排除了使用甲醛保鮮和被甲醛污染的可能。
1.2.5 化合物1a的制備 將化合物5a 0.50 g (0.59 mmol)、活化后的適量4?分子篩粉末、干燥的二氯甲烷(10 mL) 混合液在氮?dú)獗Wo(hù)下室溫?cái)嚢?0 min后,降溫至-78℃攪拌10 min,加入TMSOTf 21μL (0.12 mmol),10 min后,加入1.26 g糖基給體(2,3,4-三-O-乙酰基-α-L-鼠李糖三氯乙酰亞胺酯,2.93 mmol)的干燥的二氯甲烷(5 mL)溶液。-30℃反應(yīng)1 h,室溫?cái)嚢?.5 h后,用三乙胺終止反應(yīng)。濾除分子篩粉末,濾液減壓濃縮后經(jīng)硅膠柱純化(乙酸乙酯-石油醚=1 ∶4)得三糖糖苷化產(chǎn)物粗品(含有糖基給體的分解產(chǎn)物)。將上述三糖糖苷化產(chǎn)物粗品溶于CH3OH-CH2Cl2(1 ∶1, 20 mL),加入催化量的甲醇鈉調(diào)pH=10。室溫?cái)嚢?4 h后,用陽(yáng)離子樹(shù)脂 (H+)中和反應(yīng)液至中性,濾除固體顆粒,濃縮后經(jīng)硅膠柱純化(二氯甲烷-甲醇=6 ∶1) 得0.42 g白色固體1a (76.4%,兩步反應(yīng))。按上述方法可制備化合物1b與1c。
1.3 化合物的體外抗H5N1流感活性測(cè)試
1.3.1 H5N1假病毒的制備 參照我們前期所建立的H5N1假病毒模型[10]制備了源自A/Thailand/Kan353/2004的H5N1假病毒毒株。
1.3.2 待測(cè)化合物體外抗H5N1活性 以每孔1×104個(gè)細(xì)胞密度接種MDCK細(xì)胞于96孔細(xì)胞培養(yǎng)板,培養(yǎng)24 h;2倍稀釋化合物到不同濃度,50 μL 化合物與假病毒(1 ng p24每孔)在37℃孵育30 min;往96孔板中加入化合物和假病毒的混合物,在37℃的細(xì)胞培養(yǎng)箱繼續(xù)培養(yǎng)48 h;吸去培養(yǎng)上清,用PBS洗2次細(xì)胞,每孔加50 μL 裂解液,輕輕搖晃,繼續(xù)靜置30 min,待細(xì)胞裂解完畢,吸取40 μL裂解物到白板,加入熒光素酶顯色底物,在多功能酶標(biāo)儀上檢測(cè)化學(xué)發(fā)光值,判斷藥物抑制病毒進(jìn)入的活性。化合物抑制率/%=[1-(E-N)/(P-N)]×100,其中E代表實(shí)驗(yàn)組的化學(xué)發(fā)光值,P代表陽(yáng)性即不加藥物只加病毒的化學(xué)發(fā)光值,N代表陰性對(duì)照組的化學(xué)發(fā)光值。化合物的半數(shù)抑制濃度(IC50)作為化合物抗病毒活性的指標(biāo),通過(guò)Calccusyn軟件計(jì)算得出。
1.3.3 化合物細(xì)胞毒性的測(cè)定 采用標(biāo)準(zhǔn)的MTT[10]法測(cè)試化合物對(duì)MDCK細(xì)胞的細(xì)胞毒性并進(jìn)一步計(jì)算半數(shù)細(xì)胞死亡濃度(CC50)。
2.1 化合物的合成表征
2.1.1 glycyrrhetinic acid ethyl ester (2a)1H NMR (DMSO-d6): δ 5.61 (s, 1H, H-12), 4.17 (dq, 1H, J=10.8, 7.2 Hz OCH2CH3-1), 4.10 (dq, 1H, J=10.8, 6.8 Hz OCH2CH3-2), 3.20 (dd, 1H, J=11.1, 5.2 Hz, H-3), 2.78 (ddd, 1H, J=13.5, 4.6, 3.6 Hz, H-1), 2.30 (s, 1H, H-9), 2.06-2.09 (m, 1H, H-18), 1.98-2.01 (m, 1H, H-15), 1.95-1.97 (m, 1H, H-21), 1.88 (ddd, 1H, J=13.6, 4.2, 2.9 Hz, H-19), 1.23 (t, 3H, J=7.2 Hz, CH2CH3), 1.12, 1.11, 1.10, 0.98, 0.78, 0.77 (each s, each 3H, CH3), 0.68 (dd, 1H, J = 11.5, 1.7 Hz, H-5); ESIMS calcd for C32H50NaO4521.4; found 521.4;
2.1.2 ursolic acid ethyl ester (2b)1H NMR (CDCl3):δ 5.27 (t, 1H, J=3.6 Hz, H-12), 3.65 (q, 2H, J=7.2 Hz, OCH2CH3), 3.25 (dd, 1H, J=11.3, 4.7, H-3), 2.25 (d, 1H, J=11.4 Hz, H-18), 0.97 (d, 3H, J=6.2 Hz, CH3), 0.96 (t, 3H, J=7.0 Hz, CH2CH3), 0.89 (d, 3H, J=6.2 Hz, CH3), 1.10, 1.01, 0.95, 0.82, 0.78 (each s, each 3H, CH3); ESIMS calcd for C32H52NaO3507.4; found 507.4;
2.1.3 betulinic acid ethyl ester (2c)1H NMR (CDCl3):δ 4.75 (brs, 1H, H-29), 4.61 (brs, 1H, H-29), 3.68 (d, J=9.7 Hz, 1H, H-28), 3.65 (q, 2H, J=7.0 Hz, OCH2CH3), 3.33 (d, J=9.8 Hz, 1H, H-28), 3.16 (dd, J=11.0, 4.4 Hz, 1H, H-3), 3.00-3.03 (m, 1H, H-19), 2.20-2.26 (m, 2H), 1.90-1.91 (m, 2H), 1.82-1.85 (m, 1H), 1.12 (t, 3H, J=7.2 Hz, CH2CH3), 1.18, 0.99, 0.97, 0.93, 0.84, 0.79 (each s, each 3H, each CH3); ESIMS calcd for C32H52NaO3507.3; found 507.4;
2.1.4 Ethyl 3β-O-(2,3,4,6-Tetra-O-benzoyl-β-D-glucopyranosyl)-11-oxo-olean-12-en-30-oate (3a)1H NMR (CDCl3): δ 7.35-8.02 (m, 20H, Ar-H), 5.68 (s, 1H, H-12), 5.65 (t, 1H, J=9.6 Hz, H-3′), 5.53 (t, 1H, J=9.6 Hz, H-4′), 4.63 (d, 1H, J=8.1 Hz, H-1′), 4.63 (dd, 1H, J=11.8, 3.2 Hz, H-6′-1), 4.48 (dd, 1H, J=11.9, 6.7 Hz, H-6′-2), 4.18 (dq, 1H, J=10.8, 7.2 Hz OCH2CH3-1), 4.09-4.12 (m, 1H, OCH2CH3-2), 4.02-4.08 (m, 1H, H-2′), 3.88-3.92 (m, 1H, H-5′), 3.25 (dd, 1H, J=11.8, 4.7 Hz, H-3), 2.79 (dt, 1H, J=13.8, 3.5 Hz, H-1), 2.55 (d, 1H, J=3.2 Hz, H-9), 2.31 (s, 1H), 2.12(dd, 1H, J=13.6, 3.6 Hz, H-18), 2.10 (dd, 1H, J=13.6, 4.5 Hz, H-15), 2.01-2.03 (m, 1H, H-21), 1.96-1.99 (m, 1H, H-19), 1.90-1.93 (m, 1H, H-2), 1.23 (t, 3H, J=7.2 Hz, CH2CH3), 1.18, 1.16, 1.15, 1.07, 0.89, 0.85 (each s, each 3H, each CH3); ESIMS calcd for C66H76KO131115.5; found 1115.5;
2.1.5 3β-O-(2,3,4,6-Tetra-O-benzoyl-β-D-glucopyranosyl)-ursolic-28-ethyl ester (3b)1H NMR (CDCl3): δ 7.28-8.06 (m, 20H, Ar-H), 5.93 (t, 1H, J=9.7 Hz, H-3′), 5.57-5.60 (m, 2H, H-2′, H-4′), 5.26 (t, 1H, J=3.6 Hz, H-12), 4.85 (d, 1H, J=8.2 Hz, H-1′), 4.56-4.58 (m, 2H, H-6′×2), 4.14-4.17 (m, 1H, H-5′), 3.66 (q, 2H, J=7.1 Hz, OCH2CH3), 3.09 (dd, 1H, J=11.8, 4.3 Hz, H-3), 2.25 (d, 1H, J=11.5 Hz, H-18), 1.05, 0.85, 0.70, 0.69, 0.62 (each s, each 3H, each CH3), 0.99 (t, 3H, J=7.1 Hz, CH2CH3), 0.95 (d, 3H, J=6.2 Hz, CH3), 0.90 (d, 3H, J=6.3 Hz, CH3);ESIMS calcd for C66H78NaO121085.6; found 1085.6;
2.1.6 Ethyl betulinate 3β-O-2,3,4,6-Tetra-O-benzoyl-β-D-glucopyranoside (3c)1H NMR (CDCl3): δ 7.28-8.05 (m, 20H, Ar-H), 5.91 (t, 1H, J=9.6 Hz, H-3′), 5.60 (t, 1H, J=9.6 Hz, H-4′), 5.55 (dd, 1H, J=9.6, 8.0 Hz, H-2′), 4.85 (d, 1H, J=8.0 Hz, H-1′), 4.76 (d, 1H, J=2.2 Hz, H-29-1), 4.65-4.66 (m, 1H, H-29-2), 4.61 (dd, 1H, J=11.8, 3.4 Hz, H-6′-1), 4.53 (dd, 1H, J=11.9, 6.7 Hz, H-6′-2), 4.13-4.16 (m, 1H, H-5′), 3.66 (q, 2H, J=7.0 Hz, OCH2CH3), 3.06 (dd, 1H, J=11.8, 4.5 Hz, H-3), 2.98-3.02 (m, 1H, H-19), 2.15-2.22 (m, 2H), 1.86-1.93 (m, 2H), 1.80-1.84 (m, 1H), 1.10 (t, 3H, J=7.2 Hz, CH2CH3), 0.98, 0.88, 0.76, 0.69, 0.63 (each s, each 3H, each CH3); ESIMS calcd for C66H78NaO121085.5; found 1085.5;
2.1.7 Ethyl 3β-O-(D-glucopyranosyl)-11-oxo-olean-12-en-30-oate (4a)1H NMR (CDCl3): δ 5.65 (s, 1H, H-12), 4.36 (d, 1H, J=7.8 Hz, H-1′), 4.08-4.15 (m, 2H, OCH2CH3), 3.80-3.88 (m, 2H, H-6′), 3.63 (t, 1H, J=9.8 Hz, H-3′), 3.60 (t, 1H, J=9.7 Hz, H-4′), 3.45 (t, 1H, J=9.7 Hz, H-2′), 3.30-3.33 (m, 1H, H-5′), 3.20 (t-like, 1H, J=10.2 Hz, H-3), 2.77 (d, 1H, J=13.2 Hz, H-1), 2.31 (s, 1H, H-9), 2.07-2.11 (m, 1H, H-18), 2.00-2.02 (m, 1H, H-15), 1.23 (t, 3H, J=7.0 Hz, CH2CH3), 1.25, 1.16, 1.14, 1.12, 1.04, 0.86, 0.82 (each s, each 3H); ESIMS calcd for C38H60NaO9683.4; found 683.4;
2.1.8 3β-O-(D-glucopyranosyl)-ursolic-28-ethyl ester (4b)1H NMR (CDCl3): δ 5.16 (t, 1H, J=3.2 Hz, H-12), 4.15 (d, 1H, J=7.6 Hz, H-1′), 3.68 (q, 2H, J=7.0 Hz, OCH2CH3), 3.63-3.65 (m, 1H, H-6′-1), 3.41-3.45 (m, 1H, H-6′-2), 3.10-3.13 (m, 1H, H-3′), 3.01-3.05 (m, 3H, H-3, H-4′, H-5′), 2.94-2.98 (m, 1H, H-2′), 2.15 (d, 1H, J=11.2 Hz, H-18), 1.01 (t, 3H, J=7.1 Hz, CH2CH3), 0.96 (d, 3H, J=6.2 Hz, CH3), 0.91 (d, 3H, J=6.2 Hz, CH3), 1.04, 0.84, 0.70, 0.69, 0.63 (each s, each 3H, each CH3); ESIMS calcd for C38H62NaO8669.5; found 669.4;
2.1.9 Ethyl betulinate 3β-O-D-glucopyranoside (4c)1H NMR (CDCl3): δ 4.78 (s, 1H, H-29-1), 4.64 (s, 1H, H-29-2), 4.34 (d, 1H, J=7.6 Hz, H-1′), 3.79-3.87 (m, 2H, H-6′), 3.69 (q, 2H, J=7.2 Hz, OCH2CH3), 3.63 (t, 1H, J=8.8 Hz), 3.56-3.59 (m, 1H), 3.45 (t, 1H, J=8.5 Hz), 3.29-3.31 (m, 1H, H-5′), 3.12 (dd, 1H, J=10.5, 4.2 Hz, H-3), 2.99-3.04 (m, 1H, H-19), 2.21-2.27 (m, 2H), 1.89-1.90 (m, 2H), 1.82-1.85 (m, 1H), 1.11 (t, 3H, J=7.0 Hz, CH2CH3), 1.18, 0.99, 0.97, 0.92, 0.83, 0.79 (each s, each 3H, each CH3); ESIMS calcd for C38H62NaO8669.4; found 669.4;
2.1.10 Ethyl 3β-O-(3,6-Di-O-benzoyl-β-D-glucopyranosyl)-11-oxo-olean-12-en-30-oate (5a)1H NMR (CDCl3): δ 7.46-8.12 (m, 10H, Ar-H), 5.68 (s, 1H, H-12), 5.26 (t, 1H, J=9.1 Hz, H-3′), 4.72 (dd, 1H, J=11.8, 1.2 Hz, H-6-1′), 4.63 (dd, 1H, J=11.8, 6.0 Hz, H-6-2′), 4.51 (d, 1H, J=7.8 Hz, H-1′), 4.06-4.11 (m, 2H, OCH2CH3), 3.76-3.80 (m, 3H, H-2′, H-4′ H-5′), 3.23 (dd, 1H, J=11.8, 4.4 Hz, H-3), 2.78 (dt, 1H, J=13.6, 3.0 Hz, H-1), 2.31 (s, 3H, H-9), 2.10-2.13 (m, 1H, H-18), 2.03-2.05 (m, 1H, H-15), 1.21 (t, 3H, J=7.2 Hz, CH2CH3), 1.34, 1.19, 1.14, 1.13, 1.02, 0.87, 0.82 (s, 3H, CH3);ESIMS calcd for C52H69O11869.5; found 869.5;
2.1.11 3β-O-(3, 6-Di-O-benzoyl-β-D-glucopyranosyl)-ursolic-28-ethyl ester (5b)1H NMR (CDCl3): δ 7.41-8.07 (m, 10H, Ar-H), 5.27 (t, 1H, J=3.2 Hz, H-12), 5.20 (t, 1H, J=9.6 Hz, H-3′), 4.62-4.65 (m, 2H, H-6′×2), 4.46 (d, 1H, J=7.8 Hz, H-1′), 3.70-3.75 (m, 3H, H-5′, H-4′, H-2′), 3.72 (q, 2H, J=7.2 Hz, OCH2CH3), 2.94 (dd, 1H, J=9.8, 4.4 Hz, H-3), 2.84 (dd, 1H, J=13.8, 3.7 Hz), 1.00 (t, 3H, J=7.2 Hz, CH2CH3), 0.96 (d, 3H, J=6.2 Hz, CH3), 0.92 (d, 3H, J=6.2 Hz, CH3), 1.05, 0.84, 0.71, 0.69, 0.62 (each s, each 3H, each CH3); ESIMS calcd for C52H70NaO10877.5; found 877.5;
2.1.12 Ethyl betulinate 3β-O-(3, 6-Di-O-benzoyl)-β-D-glucopyranoside (5c)1H NMR (CDCl3): δ 8.07 (td, 4H, J=8.2, 1.3 Hz, Ar-H), 7.60 (t, 2H, J=7.8 Hz, Ar-H), 7.47 (td, 4H, J=8.2, 1.4 Hz, Ar-H), 5.24 (t, 1H, J=8.8 Hz, H-3′), 4.79 (d, 1H, J=1.6 Hz, H-29-1), 4.70 (dd, 1H, J=11.8, 2.2 Hz, H-6′-1), 4.62-4.66 (m, 1 H, H-6′-2), 4.64 (s, 1H, H-29-2), 4.51 (d, 1H, J=7.8 Hz, H-1′), 3.74-3.78 (m, 3H, H-2′, H-4′, H-5′), 3.72 (q, 2H, J=7.2 Hz, OCH2CH3), 3.15 (dd, 1H, J=11.8, 4.5 Hz, H-3), 3.01-3.05 (m, 1H, H-19), 2.25-2.27 (m, 1H), 2.19-2.22 (m, 1H), 1.14 (t, 3H, J=7.2 Hz, CH2CH3), 1.72, 0.99, 0.96, 0.92, 0.80, 0.79 (each s, each 3H, each CH3); ESIMS calcd for C52H70NaO10877.5; found 877.5;
2.1.13 Methyl 3β- O-[2,4-Di-O-(α-L-rhamnopyranosyl)-β-D-Glucopyranosyl]-11-oxo-olean-12-en-30-oate (1a)1H NMR (CD3OD): δ 5.56 (s, 1H, H-12), 5.37 (d, 1H, J=1.7 Hz, Rha-H-1), 4.60 (brs, 1H, Rha-H-1), 4.42 (d, 1H, J=7.7 Hz, H-1′), 4.04-4.10 (m, 2H, OCH2CH3), 3.96-4.00 (m, 2H), 3.90-3.93 (m, 1H), 3.85 (dd, 1H, J=3.2, 1.8 Hz, Rha-H-2), 3.81 (dd, 1H, J=12.0, 1.7 Hz, H-6′-1), 3.75 (dd, 1H, J=9.5, 3.2 Hz, Rha-H-3), 3.66 (dd, 1H, J=12.1, 4.0 Hz, H-6′-2), 3.62 (dd, 1H, J=9.4, 3.2 Hz, Rha-H-3), 3.60 (t, 1H, J=8.9 Hz), 3.54 (t, 1H, J=8.8 Hz), 3.37-3.48 (m, 2H), 3.20 (dd, 1H, J=11.8, 4.4 Hz, H-3), 3.10-3.13 (m, 1H, H-5′), 2.72 (dt, 1H, J=13.4, 2.8 Hz, H-1), 2.45 (s, 1H, H-19), 1.27 (d, 3H, J=6.2 Hz, Rha-H-6), 1.24 (d, 3H, J=6.2 Hz, Rha-H-6), 1.43, 1.17, 1.15, 1.12, 1.08, 0.91, 0.85 (each s, each 3H, CH3), 0.98 (d, 3H, J=6.4 Hz, CH3), 0.90 (d, 3H, J=6.4 Hz, CH3);13C NMR (CD3OD): δ 201.1 (CO), 171.1 (C=OO), 171.0 (C=), 121.5 (C=), 104.1 (C-1′), 101.6 (Rha-C-1), 100.5 (Rha-C-1), 88.0, 79.1, 78.1, 77.8, 76.8, 75.2, 72.6, 72.3, 71.0, 70.8, 70.6, 69.4, 68.8, 61.8, 60.6, 55.5, 50.9, 48.5, 45.4, 43.9, 43.2, 41.1, 39.2, 39.1, 37.6, 36.7, 32.5, 31.5, 30.6, 27.8, 27.1, 27.0, 26.2, 25.9, 25.9, 22.4, 17.9, 17.0, 16.7, 16.5, 15.8, 15.7, 14.4; HRESIMS calcd for C50H80O17Na 975.5278; found 975.5293;
2.1.14 3β-O-[2,4-Di-O-(α-L-rhamnopyranosyl)-β-D-Glucopyranosyl]-ursolic-28-ethyl ester (1b)1H NMR (CD3OD): δ 5.36 (d, 1H, J=1.7 Hz, Rha-H-1), 5.23 (t, 1H, J=3.5 Hz, H-12), 4.85 (d, 1H, J=1.8 Hz, Rha-H-1), 4.44 (d, 1H, J=8.0 Hz, H-1′), 3.96-3.99 (m, 2H), 3.89-3.93 (m, 1H), 3.82 (dd, 1H, J=3.2, 1.8 Hz, Rha-H-2), 3.80 (dd, 1H, J=12.0, 1.9 Hz, H-6′-1), 3.74 (dd, 1H, J=9.6, 3.2 Hz, Rha-H-3), 3.70 (q, 2H, J=7.2 Hz, OCH2CH3), 3.66 (dd, 1H, J=12.0, 4.0 Hz, H-6′-2), 3.61 (dd, 1H, J=9.5, 3.2 Hz, Rha-H-3), 3.58 (t, 1H, J=8.5 Hz), 3.54 (t, 1H, J=9.5 Hz), 3.44 (t, 1H, J=8.6 Hz), 3.41 (t, 1H, J=9.5 Hz), 3.39 (t, 1H, J=9.6 Hz), 3.18 (dd, 1H, J=11.8, 4.4 Hz, H-3), 2.22 (d, 1H, J=11.0 Hz, H-18), 1.26 (d, 3H, J=6.2 Hz), 1.21 (d, 3H, J=6.2 Hz), 1.02 (t, 3H, J=7.0 Hz, CH2CH3), 1.10, 1.05, 0.86, 0.76 (each s, each 3H), 0.93 (d, 3H, J=6.2 Hz), 0.87 (d, 3H, J=6.2 Hz);13C NMR (CD3OD): δ 179.9, 139.7, 127.2, 105.5, 103.2, 102.0, 90.4, 80.5, 79.2, 78.1, 76.5, 74.1, 73.7, 72.5, 72.3, 72.0, 70.8, 70.1, 62.0, 57.4, 54.5, 52.1, 43.4, 40.8, 40.5, 40.3, 40.1, 37.9, 37.8, 34.3, 31.6, 29.1, 28.6, 27.2, 25.5, 24.4, 24.3, 21.5, 19.4, 18.0, 17.9, 17.8, 17.6, 17.2, 16.3, 14.5; HRESIMS calcd for C50H82O16Na 961.5532; found 961.5501;
2.1.15 Ethyl betulinate 3β-O-2,4-Di-O-(α-L-rhamnopyranosyl)-β-D- glucopyranoside (1c)1H NMR (CD3OD): δ 5.35 (d, 1H, J=1.1 Hz, Rha-H-1), 4.85 (brs, 1H, Rha-H-1), 4.73 (s, 1H, H-29-1), 4.63 (s, 1H, H-29-2), 4.42 (d, 1H, J=7.8 Hz, H-1′), 3.95-3.99 (m, 2H), 3.90-3.93 (m, 1H), 3.82 (dd, 1H, J=3.2, 1.8 Hz, Rha-H-2), 3.80 (d, 1H, J=11.0 Hz, H-6′-1), 3.75 (dd, 1H, J=9.5, 3.2 Hz, Rha-H-3), 3.71 (q, 2H, J=7.2 Hz, OCH2CH3), 3.64-3.67 (m, 2H), 3.63 (dd, 1H, J=9.5, 3.1 Hz, Rha-H-3), 3.58 (t, 1H, J=8.3 Hz), 3.54 (t, 1H, J=9.4 Hz), 3.37-3.46 (m, 3H), 3.15 (dd, 1H, J=11.5, 3.3 Hz, H-3), 2.98-3.03 (m, 1H, H-19), 2.20-2.23 (m, 2H), 1.93-1.95 (m, 1H), 1.83-1.88 (m, 2H), 1.27 (d, 3H, J=6.2 Hz, Rha-H-6), 1.22 (d, 3H, J=6.2 Hz, Rha-H-6), 1.12 (t, 3H, J=7.2 Hz, CH2CH3), 1.70, 1.02, 1.00, 0.95, 0.87, 0.83 (each s, each 3H, each CH3), 0.96 (d, 3H, J=6.4 Hz, CH3), 0.90 (d, 3H, J=6.2 Hz, CH3);13C NMR (CD3OD): δ 176.7 (C=OO), 150.2 (C=), 108.8 (C=), 104.0 (C-1′), 101.5 (Rha-C-1), 100.4 (Rha-C-1), 89.0, 79.0, 78.1, 77.8, 76.6, 75.0, 72.5, 72.2, 71.0, 70.7, 70.5, 69.3, 68.6, 60.6, 56.9, 56.0, 50.6, 50.3, 49.3, 42.0, 40.5, 38.9 (two), 38.2, 36.7, 36.5, 34.2, 31.6, 30.2, 29.5, 27.0, 26.1, 25.5, 20.7, 18.0, 17.9, 16.6, 16.5, 15.6, 15.5, 15.2, 14.3, 13.8; HRESIMS calcd for C50H82O16Na 961.5544; found 961.5501。
2.2 化合物的抗流感活性我們前期的研究發(fā)現(xiàn),3-三氟甲基苯甲酰胺類(lèi)衍生物CL-385319對(duì)多種H5N1活病毒有抑制作用,并且初步確認(rèn)了其作用靶點(diǎn)是血凝素的HA2 亞基[10]。本文以先導(dǎo)化合物1及CL-385319作陽(yáng)性對(duì)照藥,采用細(xì)胞水平的H5N1假病毒活性檢測(cè)方法測(cè)試了所合成的3個(gè)目標(biāo)化合物1a-1c對(duì)H5N1流感假病毒A/Thailand/Kan353/2004的抑制活性,其IC50分別為(6.19±0.68)、(1.25±0.22)和(3.83±0.42) μmol·L-1(Tab 1)。上述3個(gè)化合物對(duì)犬腎MDCK細(xì)胞表現(xiàn)出不同強(qiáng)度的細(xì)胞毒性,其半數(shù)細(xì)胞死亡濃度CC50分別為(24.36±0.70)、(29.02±0.12)和(28.40±0.50) μmol·L-1(Tab 1)。實(shí)驗(yàn)結(jié)果表明,化合物1a-1c比先導(dǎo)化合物1具有更強(qiáng)的體外抗H5N1流感病毒活性,提示五環(huán)三萜苷元可作為開(kāi)發(fā)新型抗流感病毒藥物的結(jié)構(gòu)骨架。

Tab 1 Inhibitory activity of the compounds against H5N1 in vitro
選擇系數(shù)(SIa)=CC50/IC50
2.3 目標(biāo)化合物對(duì)VSV-G假病毒及神經(jīng)氨酸酶NA的抑制目標(biāo)化合物1a-1c對(duì)源自A/Thailand/Kan353/2004的H5N1假病毒毒株有明顯的抑制作用,但在20 μmol·L-1濃度下對(duì)VSV-G假病毒沒(méi)有抑制活性(Fig 3A)。由于兩種假病毒僅是包膜蛋白不同,表明這3個(gè)化合物可特異性作用于H5N1流感病毒的包膜蛋白,即血凝素蛋白HA或神經(jīng)氨酸酶NA。為進(jìn)一步研究目標(biāo)化合物1a-1c可能的作用機(jī)制,我們測(cè)試了3個(gè)目標(biāo)化合物1a-1c對(duì)神經(jīng)氨酸酶NA的抑制活性。實(shí)驗(yàn)中我們發(fā)現(xiàn)在20 μmol·L-1濃度下,上述3個(gè)化合物1a-1c對(duì)神經(jīng)氨酸酶NA沒(méi)有抑制活性(Fig 3B)。

Fig 3 Target compounds do not inhibit VSVG pseudo virus and neuraminidase activity
皂苷對(duì)艾滋病、流感等多種病毒均具有較強(qiáng)的抑制作用,可作為開(kāi)發(fā)新型抗病毒藥物的先導(dǎo)化合物。本課題組前期的研究發(fā)現(xiàn),馬鈴薯三糖薯蕷皂苷衍生物1作為H5N1進(jìn)入抑制劑對(duì)兩種H5N1假病毒A/Viet Nam/1203/2004和A/Goose/Qinghai/59/05均具有較強(qiáng)的抑制作用,并且確認(rèn)了其作用靶點(diǎn)是血凝素蛋白。以化合物1為先導(dǎo)化合物合成了系列衍生物并評(píng)價(jià)了其抗H5N1禽流感活性,初步確立了其構(gòu)效關(guān)系[12-13]。本研究基于前期的工作基礎(chǔ),將先導(dǎo)化合物1結(jié)構(gòu)中的活性必需片段“馬鈴薯三糖”與常見(jiàn)的三種不同類(lèi)型的五環(huán)三萜苷元進(jìn)行偶聯(lián)設(shè)計(jì),合成了三個(gè)目標(biāo)化合物1a-1c,通過(guò)測(cè)試其抗H5N1假病毒活性進(jìn)一步研究苷元類(lèi)型的改變對(duì)抗流感活性的影響。
3種不同結(jié)構(gòu)類(lèi)型的馬鈴薯三糖五環(huán)三萜即目標(biāo)化合物1a-1c對(duì)源自A/Thailand/Kan353/2004的H5N1假病毒毒株有明顯的抑制作用,但對(duì)VSV-G假病毒和神經(jīng)氨酸酶NA沒(méi)有抑制活性。因此,馬鈴薯三糖五環(huán)三萜作為新型的H5N1禽流感小分子進(jìn)入抑制劑,可專(zhuān)一作用于病毒表面的血凝素蛋白。初步構(gòu)效關(guān)系表明:在保留活性必需片段“馬鈴薯三糖”的基礎(chǔ)上將薯蕷皂苷元替換成五環(huán)三萜苷元后可保持或提高其抗病毒活性,同時(shí)有助于降低對(duì)MDCK細(xì)胞的毒性,提高化合物的選擇指數(shù)和成藥性;以熊果酸為代表的烏蘇烷型五環(huán)三萜較齊墩果烷型或羽扇豆烷型的五環(huán)三萜作為母體苷元抗病毒活性更佳。
化合物1a-1c對(duì)H5N1流感假病毒A/Thailand/Kan353/2004的抑制活性均比先導(dǎo)化合物1更強(qiáng),且選擇系數(shù)更高。其中馬鈴薯三糖熊果酸乙酯1b的抗病毒活性最強(qiáng),選擇性系數(shù)最高,比化合物1更適合作為先導(dǎo)化合物。化合物1b體外對(duì)真病毒H5N1的抑制活性及體內(nèi)抑制實(shí)驗(yàn)正在研究中。化合物1a-1c由水溶性的馬鈴薯三糖糖鏈及脂溶性的五環(huán)三萜苷元組成,具有較好的溶解度;其脂水分配系數(shù)logP在1~2之間,滿(mǎn)足新藥設(shè)計(jì)的“類(lèi)藥規(guī)則”。皂苷往往具有一定的溶血活性,化合物1a-1c是否具有較強(qiáng)的溶血活性或其它毒性需要進(jìn)一步的研究。總之,馬鈴薯三糖熊果酸乙酯1b抗病毒H5N1活性較強(qiáng),選擇性系數(shù)較高,具有潛在的臨床應(yīng)用價(jià)值,這為進(jìn)一步設(shè)計(jì)高效、低毒的新型H5N1進(jìn)入抑制劑提供了啟示和基礎(chǔ)。
[1] Morens D M, Fauci A S. The 1918 influenza pandemic: insights for the 21st century [J].JInfectDis, 2007, 195 (7): 1018-28.
[2] 李湘斂,劉叔文,楊 潔. 表沒(méi)食子兒茶素沒(méi)食子酸酯抗甲型流感病毒的作用研究[J].中國(guó)藥理學(xué)通報(bào), 2013, 29(5): 622-5.
[2] Li X L, Liu S W, Yang J. Anti influenza A virus activity of epigallocatechin gallate [J].ChinPharmacolBull, 2013, 29(5): 622-5.
[3] An J, Lee D, Law A, et al. A novel small-molecule inhibitor of the avian influenza H5N1 virus determined through computational screening against the neuraminidase [J].JMedChem, 2009, 52 (9): 2667-72.
[4] Kobasa D, Jones S M, Shinya K, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus [J].Nature, 2007, 445 (7125): 319-23.
[5] Liu K, Fang J, Jan J, et al. Enhanced anti-influenza agents conjugated with anti-inflammatory activity [J].JMedChem, 2012, 55 (19): 8493-501.
[6] Pinto L H, Holsinger L J, Lamb R A. Influenza virus M2 protein has ion channel activity [J].Cell, 1992, 69 (3): 517-28.
[7] Gupta R K, Nguyen-Van-Tam J S. Oseltamivir resistance in influenza A (H5N1) infection [J].NEnglJMed, 2006, 354 (18): 1423-4.
[8] Kiso M, Mitamura K, Sakai-Tagawa Y, et al. Resistant influenza A viruses in children treated with oseltamivir: descriptive study [J].Lancet, 2004, 364 (9436): 759-65
[9] Cianci C, Yu K L, Dischino D D, et al. PH-dependent changes in photoaffinity labeling patterns of the H1 influenza virus hemagglutinin by using an inhibitor of viral fusion [J].JVirol, 1999, 73(3):1785-94.
[10] Zhu Z B, Li R M, Xiao G K, et al. Design, synthesis and structure-activity relationship of novel inhibitors against H5N1 hemagglutinin-mediated membrane fusion [J].EurJMedChem, 2012, 57(9): 211-6.
[11] Skehel J J, Wiley D C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin [J].AnnuRevBiochem, 2000, 69(7): 531-69.
[12] Song G P, Yang S, Zhang W, et al. Discovery of the first series of small molecule H5N1 entry inhibitors [J].JMedChem, 2009, 52 (23): 7368-71.
[13] Ding N, Chen Q, Zhang W, et al. Structure-activity relationships of saponin derivatives: a series of entry inhibitors for highly pathogenic H5N1 influenza virus [J].EurJMedChem, 2012, 53(4):316-26.
[14] Cassels B K, Asencio M. Anti-HIV activity of natural triterpenoids and hemisynthetic derivatives 2004-2009 [J].PhytochemRev, 2011, 10(4): 545-64.
[15] Yuan T, Zhang C R, Yang S P, Yue J M. Limonoids and triterpenoids from khaya senegalensis [J].JNatProd, 2010,73(4): 669-74.
[16] Wen C C, Kuo Y H, Jan J T, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus [J].JMedChem, 2007, 50(17):4087-95.
[17] Yu F, Wang Q, Zhang Z, et al. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors [J].JMedChem, 2013, 56(11):4300-19.
[18] Li Y X, Zhang Y C, Guo T T, et al. Synthesis of the cytotoxic gitogenin 3β-O-[2-O-(a-L-Rhamnopyranosyl)- β-D-galactopyranoside]and its congeners [J].Synthesis, 2006, 5:775-82.
[19] Song G P, Liu H C, Zhang W, et al. Synthesis and biological evaluation on antitumor activitie of novel anthracene L-rhamnopyranosides [J].BioorgMedChem, 2010, 18(14):5183-93.
Inhibitory activities of 3-O-β-chacotriosyl pentacyclic triterpenoids against the entry of H5N1 influenza virusesinvitro
SONG Gao-peng1,SHEN Xin-tian2,LI Su-mei3, LI Yi-bin1,F(xiàn)AN Ji-hong1,LIANG Qian-qian1,LIU Shu-wen2
(1.CollegeofResourcesandEnvironment,SouthChinaAgriculturalUniversity,Guangzhou510642,China;2.SchoolofPharmaceuticalSciences,SouthernMedicalUniversity,Guangzhou510515,China;3.SchoolofMedicine,JinanUniversity,Guangzhou510632,China)
Aim To study the inhibitory activities of potential new anti-influenza virus agents, 3-O-β-chacotriosyl pentacyclic triterpenoids against the entry of H5N1influenza viruses. Methods Three target compounds were designed and synthesized structurally related to the lead compound 3-O-β-chacotriosyl dioscin derivative (1) with inhibitory activities against H5N1 influenza viruses. The inhibitory activities of these target compounds were tested at a cellular level pseudo virus system targeting H5N1 influenza viruse entry. Results All the compounds 1a, 1b and 1c showed potent inhibitory activities against the entry of A/Thailand/Kan353/2004 pseudo virus into the target cells, of which compound 1b showed the best inhibitory activity with an IC50value of (1.25±0.22) μmol·L-1. Conclusion The SARs analysis of these compounds indicated that replacement of the aglycone moiety of compound 1 with pentacyclic triterpenoids could increase antiviral activity. Different types of pentacyclic triterpen as aglycone residue had the significant influence on the inhibitory activity (1b > 1c > 1a), suggesting ursane type of triterpenes was superior to the two other kinds of triterpenes as aglycone residue.
H5N1 avian influenza virus; influenze virus entry inhibitor; synthesis; hemagglutinin; structure-activity relationships; pentacyclic triterpenoids
時(shí)間:2015-4-15 15:44 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20150415.1545.013.html
2014-12-04,
2015-01-07
國(guó)家自然科學(xué)基金資助項(xiàng)目(No 21202047, U1301224);廣東省自然科學(xué)基金博士啟動(dòng)項(xiàng)目(No S2012040007711);廣東高校優(yōu)秀青年創(chuàng)新人才培養(yǎng)計(jì)劃項(xiàng)目(No LYM10037);高等學(xué)校博士學(xué)科點(diǎn)專(zhuān)項(xiàng)科研基金(新教師類(lèi))(No 20114404120016);廣州市科技計(jì)劃重點(diǎn)項(xiàng)目(No 11C32100704)
宋高鵬(1980-),男,博士,講師,研究方向:藥物化學(xué), E-mail: vinsin1021@126.com; 劉叔文(1972-),男,博士,教授,博士生導(dǎo)師,研究方向:藥理學(xué),通訊作者,E-mail: liusw@smu.edu.cn
10.3969/j.issn.1001-1978.2015.05.012
A
1001-1978(2015)05-0647-08
R282.71;R284.1;R373.13;R511.7;R978.7摘要:目的 研究3種不同類(lèi)型的馬鈴薯三糖五環(huán)三萜能否通過(guò)抑制H5N1流感病毒進(jìn)入靶細(xì)胞,作為潛在的新型抗流感藥物進(jìn)行研發(fā)。方法 以馬鈴薯三糖薯蕷皂苷衍生物1為先導(dǎo)化合物,設(shè)計(jì)并合成3個(gè)目標(biāo)化合物,利用建立的H5N1假病毒活性檢測(cè)方法,測(cè)試化合物的抑制活性。結(jié)果 目標(biāo)化合物1a、1b和1c對(duì)源自A/Thailand/Kan353/2004的H5N1假病毒毒株均具有明顯的抑制作用,且化合物1b的活性最好,其IC50達(dá)到(1.25±0.22) μmol·L-1。結(jié)論 初步構(gòu)效關(guān)系研究表明,將先導(dǎo)化合物1結(jié)構(gòu)中的薯蕷皂苷苷元替換成五環(huán)三萜苷元后可提高其抗病毒活性;五環(huán)三萜的苷元類(lèi)型對(duì)抗病毒活性有重要影響,烏蘇烷型的五環(huán)三萜為苷元其抗病毒活性最強(qiáng)。