吳 瑕, 吳鳳芝, 周新剛
(1東北農業大學園藝學院, 哈爾濱 150030; 2黑龍江八一農墾大學農學院, 黑龍江大慶 163319)
分蘗洋蔥伴生對番茄礦質養分吸收及灰霉病發生的影響
吳 瑕1,2, 吳鳳芝1*, 周新剛1
(1東北農業大學園藝學院, 哈爾濱 150030; 2黑龍江八一農墾大學農學院, 黑龍江大慶 163319)

伴生; 番茄; 分蘗洋蔥; 養分吸收; 番茄灰霉病
番茄(LycopersiconesculentumMill.)是設施栽培中最常見的果菜之一。但是,連作障礙已成為番茄生產中亟待解決的一大難題。例如,連作8年后番茄根系活力顯著下降,果實品質明顯變劣[1]。灰霉病是番茄設施栽培中的常見病害,嚴重影響番茄的產量和經濟效益[2]。目前,生產中主要采用殺菌劑對番茄灰霉病進行防治。但是,殺菌劑大量且單一性使用不但會使病原物的抗藥性增強,還會嚴重污染環境[3]。研究證實,科學合理的間套作和伴生栽培是提高土壤中礦質養分吸收[4]和降低土壤病蟲害[5-7]的有效手段之一。
植物的營養抗性在各種病蟲害綜合防治技術中起著重要作用[8]。有研究顯示植株內全錳含量直接影響小麥全蝕病的發生[9]。喬鵬等[10]證實小麥間作與單作相比顯著增加不同時期小麥葉片氮、磷和鉀含量,降低了各抗性小麥品種白粉病的發生程度,相對防效最高達81.49%。而植株內各種營養的“平衡”或比例,如同任何一種特殊營養的水平一樣重要[11]。植物組織中養分濃度的比值是反映植株體內養分平衡狀況的重要參數。例如,作物氮/鉀比率與作物抗真菌和細菌病害的能力密切相關[12]。因此,植株內各種營養的“平衡”或比例和植株抗病性的關系已成為研究熱點。

1.1 試驗材料
試驗于2012年1月至4月在東北農業大學園藝站日光溫室內進行。供試番茄品種為東農708(月光),由東北農業大學番茄育種課題組提供。分蘗洋蔥由黑龍江省五常市紅旗社村提供。供試土壤基本化學性狀為: pH 6.61(土水比為1 ∶5), EC 1.5 mS/cm(土水比為1 ∶5),有機質25.20 g/kg、 全氮1.58 g/kg、 堿解氮91.00 mg/kg、 速效磷243.43 mg/kg、 速效鉀323.30 mg/kg、 交換性錳(NH4OAc-Mn)6.89 mg/kg。
1.2 試驗設計
試驗采用盆栽的方式,模擬田間種植。2012年1月15日播種育苗,2月10日兩葉一心分苗,3月22日待番茄7葉一心定植于塑料盆(直徑21 cm,高17 cm)中。將園土與腐熟豬糞(營養含量為有機質15%、 N 0.5%、 P2O50.5%、 K2O 0.4%)按體積比2 ∶1 混勻后裝盆,每盆裝風干土3.0 kg。試驗設番茄單作、分蘗洋蔥單作、分蘗洋蔥與番茄伴生,其中伴生將分蘗洋蔥和番茄分開取樣,共3個處理,每處理3次重復,每重復10盆,隨機區組排列。單作番茄每盆定植1株,伴生處理在番茄一側距5 cm處同時定植4株分蘗洋蔥。分蘗洋蔥單作每盆定植4株。試驗期間按番茄生長習性常規管理,不使用殺菌劑和殺蟲劑,并及時進行人工除草,定期調換盆的位置。
1.3 取樣方法
在番茄與分蘗洋蔥伴生30 d后取樣,每處理3次重復,每重復隨機選4盆進行植物株高、 莖粗生長指標測定,同時對所有番茄植株進行發病率和病情指數調查。采用α-萘胺氧化法[16]測定根系活力。植株105℃殺青15 min,70℃烘干至恒重后稱重。采用抖根法[17]取番茄和分蘗洋蔥根際土,每重復隨機選取4盆混合后作為一個土壤樣本,過1 mm篩后一部分風干用于土壤養分測定,一部分4℃保存用于土壤酶活性測定。
1.4 測定方法
植株H2SO4-H2O2消煮后,全氮含量用凱氏法測定,全磷含量用鉬銻抗比色法測定,全鉀含量用火焰光度計法測定[18];全錳用原子吸收分光光度計測定[19]。土壤堿解氮采用堿解擴散法測定[18];速效磷采用鉬藍比色法測定[18];速效鉀采用醋酸銨-火焰光度法測定[18];土壤交換態錳用原子吸收分光光度計測定[19];土壤有機質采用重鉻酸鉀容量滴定法測定[18];土壤pH(水 ∶土=5 ∶1)采用電位法測定[18]。土樣脲酶采用苯酚-次氯酸鈉比色法測定[20];脫氫酶采用TTC比色法測定[21];酸性磷酸酶采用對硝基苯磷酸鹽法測定[22];多酚氧化酶采用比色法測定[20]。土壤酶采用鮮土測定,通過含水量換算成每克干土酶活單位。
1.5 病害調查
對番茄灰霉病進行調查,分級標準按農業部農藥檢定所指定方法[23]。
發病率(%)=發病株數/調查總株數×100
病情指數(DI)=[∑(各病級株數×該病級值)/(株數總和×發病最重級代表數值)]×100
1.6 數據處理及分析
原始數據的整理采用Microsoft Excel(Office 2003)軟件,數據處理采用SAS 9.1.3軟件,方差分析使用ANOVA過程(Duncan′s 新復極差法,P<0.05)。N/K,N/Mn比值方差分析是將每個處理中的氮、鉀和錳含量三次重復分別求比值再作方差分析。
2.1 伴生對分蘗洋蔥和番茄生長影響
圖1表明,與單作相比,伴生處理顯著增加了番茄株高、地上部及地下部干重(P<0.05)及番茄根系活力(P<0.05),但顯著降低了分蘗洋蔥地上部、 地下部干重及根系活力(P<0.05)。伴生后,番茄地上部和地下部干重分別增加19.31%和16.36%,而分蘗洋蔥地上部和地下部干重分別降低39.53%和31.8%。

圖1 不同栽培模式種植30天后番茄和分蘗洋蔥的生長狀況Fig.1 Growth status of tomato and tillered onion 30 days after transplanting [注(Note):柱上不同字母表示處理間在P<0.05水平差異顯著 Different letters above the bars indicate significant difference among treatments at P<0.05.]

圖2 不同栽培模式種植30天后番茄和分蘗洋蔥根際土壤酶活性Fig.2 Enzyme activity in the rhizosphere soil of tomato and tillered onion 30 days after transplanting [注(Note):柱上不同字母表示處理間在P<0.05水平差異顯著 Different letters above the bars indicate significant difference among treatments at P<0.05.]

圖3 不同栽培模式種植30天后番茄和分蘗洋蔥根際土壤化學性狀 Fig.3 Chemical properties in the rhizosphere soil of tomato and tillered onion 30 days since transplanting[注(Note):柱上不同字母表示處理間在P<0.05水平差異顯著 Different letters above the bars indicate significant difference among treatments at P<0.05.]
2.2 分蘗洋蔥伴生對番茄根際土壤酶活性的影響
圖2顯示,分蘗洋蔥伴生顯著提高了番茄根際土壤中脫氫酶和多酚氧化酶活性(P<0.05),但對土壤酸性磷酸酶和脲酶活性無顯著影響。伴生和單作的分蘗洋蔥根際土壤脲酶、酸性磷酸酶活性均無顯著差異。伴生分蘗洋蔥根際土壤脫氫酶和多酚氧化酶活性顯著低于單作(P<0.05)。
2.3 栽培模式對分蘗洋蔥和番茄根際土壤有效礦質養分含量的影響
伴生較單作顯著降低了番茄根際土壤中堿解氮、速效磷、速效鉀和有效錳含量(圖3)及分蘗洋蔥根際土壤中速效磷和有效錳的含量(P<0.05),但對分蘗洋蔥的其他相關指標無顯著影響,伴生對根際土壤中pH和有機質含量無顯著影響。
2.4 伴生對分蘗洋蔥和番茄植株中養分含量的影響
與單作相比,伴生顯著增加了番茄植株全磷和全錳含量及分蘗洋蔥植株全氮和全錳含量(P<0.05),但對番茄植株全氮和全鉀含量及分蘗洋蔥植株全磷和全鉀含量無顯著影響(圖4)。與單作相比,伴生后番茄植株內全磷和全錳含量分別提高了6.56%和23.74%,而分蘗洋蔥植株內全氮和全錳含量分別提高了20.91%和16.89%。
2.5 伴生對植株內的養分比例及番茄灰霉病發病率、病情指數的影響
表1顯示,與單作相比,伴生顯著降低了番茄植株內氮/鉀和氮/錳比率(P<0.05),但提高了分蘗洋蔥植株內氮/鉀比率(P<0.05)。病害調查顯示,分蘗洋蔥伴生對番茄灰霉病的發病率無顯著影響,但顯著降低了番茄灰霉病的病情指數(P<0.05)。
番茄灰霉病病情指數與植株內全錳含量呈顯著(P<0.05)負相關,與植株體內氮/鉀和氮/錳比率呈極顯著(P<0.01)正相關。與植株體內的全氮、全磷及全鉀含量相關性不顯著(表2)。
在同一個生態系統中,植物之間的正效應和負效應是同時存在的[24]。本研究結果顯示與單作相比,分蘗洋蔥-番茄伴生栽培顯著促進了番茄株高、地上和地下部分干重及根系活力的增加(P<0.05),但分蘗洋蔥地上和地下干重及根系活力顯著低于單作(P<0.05)。可見分蘗洋蔥和番茄伴生體系中的種間促進作用和種間競爭作用同時存在,這說明分蘗洋蔥伴生確實能促進番茄生長,但這種促進作用是以犧牲分蘗洋蔥自身的生長為代價的。
本研究表明,伴生促進番茄根際土壤脫氫酶活性顯著增加(P<0.05)。土壤脫氫酶活性可以作為微生物區系活動和大小的指標之一[25]。伴生栽培下分蘗洋蔥根系活動可能引起番茄根際土壤微生物群落發生改變[26],并影響了伴生番茄磷吸收水平[27,28]。伴生番茄根際多酚氧化酶活性顯著增加(P<0.05)。土壤多酚氧化酶能把土壤中酚類物質氧化成醌,參與土壤有機組分中芳香類物質的轉化,使土壤含酚量降低,土壤得到修復更利于植株的干物質積累[29-30]。伴生后對番茄分蘗洋蔥根際土壤脲酶和酸性磷酸酶活性差異不顯著,這與柴強等[27]研究結論相近。但是,諸多研究證明合理的間套作能提高根際土壤酶活性[31-32]。分蘗洋蔥和番茄伴生在養分利用方面產生的補償和提高的作用可能來自于其他途徑,與根際脲酶和酸性磷酸酶關系不大。

圖4 伴生30天對番茄和分蘗洋蔥植株全氮、全磷、全鉀及全錳含量的影響Fig.4 Effect of the intercropping on total nitrogen(N),total phosphorus(P),total potassium(K) and total manganese(Mn)contents of tomato and tillered onion plants[注(Note):柱上不同字母表示處理間在P<0.05水平差異顯著 Different letters above the bars indicate significant difference among treatments at P<0.05.]

處理TreatmentN/KN/Mn發病率(%)Incidencerate病情指數Diseaseindex單作的番茄Monoculturetomato0.79±0.01a109.13±12.72a83.33±0.00a9.50±0.00a伴生的番茄Intercroppoingtomato0.71±0.01b87.76±1.47b83.33±13.61a3.30±0.03b單作的分蘗洋蔥Monoculturetilleredonion0.98±0.01b76.96±3.97a伴生的分蘗洋蔥Intercroppoingtilleredonion1.14±0.03a79.63±2.19a
注(Note): 同列數據后不同字母表示處理間在0.05水平差異顯著 Values followed by different letters in a column are significantly different among treatments at the 0.05 level.

表2 番茄病情指數與植株養分及比值的相關性分析(r)
注(Note):n=6; *—P<0.05; **—P<0.01.
分蘗洋蔥伴生后番茄根際土壤中堿解氮、速效磷、速效鉀和有效錳顯著降低(P<0.05),由于間作增加了另一種作物,形成伴生植物與主作植物競爭吸收礦質元素的現象,故間作植株根際土壤的速效養分含量均低于單作處理[33]。伴生后番茄植株全氮含量變化不顯著,而伴生分蘗洋蔥植株內全氮含量顯著高于單作(P<0.05),這可能是伴生體系中兩種植物競爭吸收土壤中速效氮,致使番茄植株內的氮增加不顯著。伴生后番茄株內全磷顯著增加(P<0.05)。伴生后番茄根干重顯著增加(P<0.05),根系的形態參數如根長、側根的數量、根表面積等已經被證明與磷素的高效吸收密切相關[34-37]。伴生番茄的根系形態變化有待于進一步驗證。伴生后番茄植株內全鉀有增加的趨勢,但是差異不顯著,這可能是土壤中速效鉀含量較高(323.30 mg/kg),已經能夠滿足番茄的生長需要,這與前人研究結果相似[38]。前人研究表明,間/混作條件下一種植物生長和錳營養的改善可能與另一種植物通過根系分泌物來活化土壤難溶性的錳氧化物、提高土壤有效錳含量有密切關系[39-41]。本研究表明,伴生后分蘗洋蔥和番茄植株體內全錳的含量均顯著增加(P<0.05),伴生體系植株可能通過根系分泌物對Mn2+的螯合作用而提高了根際土壤中錳的有效性,進而促進了對錳的吸收[42]。關于分蘗洋蔥伴生如何通過根系分泌物來活化土壤錳氧化物的機制還有待于進一步研究。
本研究表明,伴生對番茄植株內全氮無顯著影響,而伴生提高了番茄植株內全鉀含量,因此,伴生后番茄植株內氮/鉀比率顯著降低(P<0.05),且植株內氮/鉀比率與番茄灰霉病病情指數呈極顯著正相關(P<0.01),說明分蘗洋蔥伴生使番茄氮和鉀養分平衡狀況變化,可能是植株抗病性提高的主要原因之一。本研究得出分蘗洋蔥伴生使番茄植株內全錳含量顯著增加(P<0.01),且番茄的病情指數與全錳含量呈顯著負相關(P<0.05)。植株內錳能調節作物體內氧化還原反應,提高植株的抗病性[43]。錳還作為苯丙烷代謝途徑相關酶的輔助因子,改善促進根系中酚類物質和木質素合成增加,從而提高抗真菌的能力[44]。本研究中得出分蘗洋蔥伴生對番茄灰霉病的發病率無顯著影響,但降低了番茄灰霉病的病情指數(P<0.05)。其原因可能是病害調查較晚影響發病率結果,有待于進一步驗證。
分蘗洋蔥-番茄伴生栽培促進番茄生長但抑制分蘗洋蔥生長。伴生后番茄植株內的全磷和全錳含量顯著增加(P<0.05),且伴生的番茄植株內氮/鉀和氮/錳比顯著降低(P<0.01)。分蘗洋蔥伴生后顯著降低番茄灰霉病的病情指數(P<0.05)。綜上,分蘗洋蔥伴生促進了番茄生長和對磷和錳礦質營養的吸收,促進植株內養分平衡,提高了番茄抗灰霉病能力。
[1] 吳鳳芝,劉德,王東凱,等. 大棚番茄不同連作年限對根系活力及其品質的影響[J]. 東北農業大學學報,1997,28(1): 33-38. Wu F Z, Liu D, Wang D Ketal. The effects of different years of continuous cropping on the activity of root systems and their qualities in the plastic house tomatoes[J]. Journal of Northeast Agricultural University, 1997, 28(1): 33-38.
[2] 齊軍山, 張悅麗, 張博, 等. 設施番茄灰霉病綠色防控技術[J]. 中國蔬菜, 2013, (15): 26-27. Qi J S, Zhang Y L, Zhang Betal. Non-pollutant prevention and control technology of gray mould on facility tomatoes[J]. China Vegetables, 2013, (15): 26-27.
[3] 李勇杰, 陳遠學, 湯利, 等. 地下部分隔對間作小麥養分吸收和白粉病發生的影響[J]. 植物營養與肥料學報, 2007, 13(5): 929-934. Li Y J, Chen Y X, Tang Letal. Effects of root separation on nutrient uptake of wheat and occurrence of powdery mildew under wheat-fababean intercropping[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 929-934.
[4] Zhou W J, Zhang Y Z, Wang K Retal. Plant phosphorus uptake in a soybean-citrus intercropping system in the red soil hilly region of South China[J]. Pedosphere, 2009, 19(2): 244-250.
[5] Johnson M W, Mau R F L. Effects of intercropping beans and onions on populations ofLiriomyzaspp. and associated parasitic hymenoptera[J]. Hawaiian Entomological Society, 1986, 27(15): 95-103.
[6] Chen Y X, Zhang F S, Tang Letal. Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean[J]. Plant and Soil, 2007, 291: 1-13.
[7] 肖靖秀, 周桂夙, 湯利, 等.小麥/蠶豆間作條件下小麥的氮、鉀營養對小麥白粉病的影響[J].植物營養與肥料學報, 2006, 12(4): 517-522. Xiao J X, Zhou G S, Tang Letal. Effects of nitrogen and potassium nutrition on the occurence ofBlumeriagraminis(DC). Speer of wheat in wheat and faba bean intercropping[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4): 517-522.
[8] 肖靖秀, 鄭毅. 間套作系統中作物的養分吸收利用與病蟲害控制[J]. 中國農學通報, 2005, 21(3): 150-154. Xiao J X, Zheng Y. Nutrients uptake and pests and diseases control of crops in interopping system[J]. China Agriculture Science Bulletin, 2005, 21(3): 150-154.
[9] 喬鵬, 湯利, 鄭毅, 等. 不同抗性小麥品種與蠶豆間作條件下的養分吸收與白粉病發生特征[J]. 植物營養與肥料學報, 2010, 16(5): 1086-1093. Qiao P, Tang L, Zheng Yetal. Characteristics of nutrient uptakes and powdery mildew incidence of different resistant wheat cultivars intercropping with faba bean[J].Plant Nutrition and Fertilizer Science, 2010, 16(5): 1086-1093.
[10] Graham R D. A role for manganese in the resistance of wheat plants to take-all[J]. Plant and Soil, 1984, 78: 441-444.
[11] Marschiver H. Mineral nutrition of higher plants [M]. London: Academic Press, 1991, 223-231.
[12] 蔣衛杰, 鄭光華. 氮鉀互作對蔬菜生長發育的影響[J]. 中國蔬菜, 1992, (2): 46-50. Jiang W J, Zheng G H. The influence of nitrogen and potassium to against each other vegetable growth and development[J]. China Vegetables, 1992, (2): 46-50.
[13] Go' mez R O, Zavaleta M E, Gonza' lez H Aetal. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development[J]. Field Crops Research, 2003, 83: 27-34.
[14] 劉鳳淮, 文廷剛, 杜小鳳, 等. 蔬菜連作障礙因子分析及其防治措施[J]. 江西農業學報, 2008, 20(5): 41-43. Liu F H, Wen T G, Du X Fetal. Analysis of obstacle factors of vegetable continuous cropping and prevention measures[J]. Acta Agriculturae Jiangxi, 2008, 20(5): 41-43.
[15] 吳鳳芝, 潘凱, 劉守偉. 設施土壤修復及連作障礙克服技術[J]. 中國蔬菜, 2013, (13): 39. Wu F Z, Pan K, Liu S W. Restoration of soil and the technology of continuous cropping obstacle to overcome[J]. China Vegetables, 2013, (13): 39
[16] 張雄. 用TTC(紅四氮唑)法測定小麥根和花粉活力及其應用[J]. 植物生理學通訊, 1982, (3): 48-50. Zhang X. TTC method is used to test the wheat root and pollen vitality and its application[J]. Plant Physiology Communications, 1982, (3): 48-50.
[17] Inderjit Mallik A U. Effect of phenolic compounds on selected soil properties[J]. Forest Ecology Management, 1997, 92: 11-18.
[18] 鮑士旦. 土壤農化分析[M]. 北京: 中國農業出版社, 2000. 301-320. Bao S D. Soil agrochemical analysis [M]. Beijing: China Agriculture Press, 2000. 301-320.
[19] 秦懷英. 植物錳的測定[M]. 北京: 農業出版社, 1992, 225-226. Qin H Y. Determination of manganese in the plant [M]. Beijing: Agriculture Press, 1992. 225-226.
[20] 關松蔭. 土壤酶及其研究法[M]. 北京: 農業出版社, 1987. 274-328. Guan S Y. Soil enzyme and its research methods [M]. Beijing: Agriculture Press, 1987. 274-328.
[21] 嚴昶升. 土壤肥力研究方法[M]. 北京: 農業出版社, 1988. Yan C S. Soil fertility research methods[M]. Beijing: Agriculture Press, 1988.
[22] 魯如坤. 土壤農業化學分析方法[M]. 北京: 中國農業科技出版社, 2000. 231-233. Lu R K. Analytical method of soil agrochemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000. 231-233.
[23] 農業部農藥檢定所. 農藥田間藥效試驗準則[M]. 北京: 中國標準出版社, 1998. 45-51. Institute for the Control of Agrochemicals Ministry of Agriculture. Field trial guildline for pesticide test [M]. Beijing: Standards Press of China, 1998. 45-51.
[24] 鄭曉媛, 趙莉, 許楠, 等. 桑樹大豆間作地上部和地下部的種間作用研究[J]. 土壤, 2011, 43(3): 493-497. Zheng X Y, Zhao L, Xu Netal. Interspecific interaction of below-ground and above-ground indices in mulberry-soybean intercropping system[J]. Soils, 2011, 43(3): 493-497.
[25] Zhou X G, Wu F Z .p-Coumaricacid influenced cucumber rhizosphere soil microbial communities and the growth offusariumoxysporumf. sp.cucumerinumOwen[J]. PLoS ONE, 2012, 7(10): 1-11.
[26] He Y, Ding N, Shi J Cetal. Profiling of microbial PLFAs: Implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils[J]. Soil Biology & Biochemistry, 2013, (57): 625-634.
[27] 周禮愷. 土壤酶學[M]. 北京: 科學出版社, 1987. 229-230. Zhou L K. Soil enzyme [M]. Beijing: Science Press, 1987. 229-230.
[28] 李東坡, 武志杰, 陳利軍等. 長期培肥黑土脫氫酶活性動態變化及其影響因素[J]. 土壤通報, 2005, 36(5): 679-683. Li D P, Wu Z J, Chen L Jetal. Dynamics of dehydrogenase activity of black soil treated by long-term fertilization[J]. Chinese Journal of Soil Science, 2005, 36(5): 679-683.
[29] 賈新民, 于泉林, 沙永平, 等. 大豆連作土壤多酚氧化酶研究[J]. 黑龍江八一農墾大學學報, 1995, 8(2): 40-43. Jia X M, Yu Q L, Sha Y Petal. Study on soil polyphenol oxidase in continuous cropping soybean[J]. Journal of Heilongjiang Bayi Land Reclamation University, 1995, 8(2): 40-43.
[30] 喬蓬蕾, 吳鳳芝, 周新剛. 連作對作物根際土壤微生物菌群及酶活性影響[J]. 沈陽農業大學學報, 2013, 44(5): 524-530. Qiao P L, Wu F Z, Zhou X G. Effects of continuous cropping on soil microbe communities and enzyme activity[J]. Journal of Shenyang Agricultural University, 2013, 44(5): 524-530.
[31] 柴強, 黃鵬, 黃高寶. 間作對根際土壤微生物和酶活性的影響研究[J]. 草業學報, 2005, 14(5): 105-110. Chai Q, Huang P, Huang G B. Effect of intercropping on soil microbial and enzyme activity in the rhizosphere[J]. Acta Prataculturae Sinica, 2005, 14(5): 105-110.
[32] 張潔瑩, 寧堂原, 馮宇鵬, 等. 套作糯玉米對連作菜田土壤特性及產量的影響[J]. 中國農業科學, 2013, 46(10): 1994-2003. Zhang J Y, Ning T Y, Feng Y Petal. Effects of intercropping with waxy maize on crop yield and soil properties of the continuous vegetable field[J]. Scientia Agricultura Sinica, 2013, 46(10): 1994-2003.
[33] 唐世凱, 劉麗芳, 李永梅, 等. 烤煙間作草木樨對土壤養分的影響[J]. 中國煙草科學, 2009, 30(5): 14-18. Tang S K, Liu L F, Li Y Metal. Effects of flue-cured tobacco intercropping with sweet clover on soil nutrient contents[J]. Chinese Tobacco Science, 2009, 30(5): 14-18.
[34] Liu Y, Mi G H, Chen F Jetal. Rhizosphere effect and root growth of two maize (ZeamaysL.) genotypes with contrasting P efficiency at low P availability[J]. Plant Science, 2004, 167: 217-223.
[35] Zhu J M, Lynch J P. The contribution of lateral rooting to phosphorus acquisition efficiency in maize(Zea mays) seedlings[J]. Funct Plant Biol, 2004, 31: 949-958.
[36] Lynch J P, Brown K M. Root strategies for phosphorus acquisition[A]. The Ecophysiology of Plant-Phosphorus Interactions[C]. New York: Springer, 2008. 83-116.
[37] Ramaekers L, Remans R, Rao I Metal. Strategies for improving phosphorus acquisition efficiency of crop plants[J]. Field Crops Research, 2010, 117: 169-176.
[38] 肖靖秀, 鄭 毅, 湯利, 等. 麥蠶豆間作系統中的氮鉀營養對小麥銹病發生的影響[J]. 云南農業大學學報, 2005, 20(5): 640-645. Xiao J X, Zheng Y, Tang Letal. Effects of potassium and nitrogen supply on the occurrence of wheat rust in wheat and faba bean intercropping system[J]. Journal of Yunnan Agricultural University, 2005, 20(5): 640-645.
[39] 何春娥, 趙秀芬, 劉學軍, 等. 燕麥/小麥間作對小麥生長和錳營養的影響[J]. 生態學報, 2006, 26(2): 357-363. He C E, Zhao X F, Liu X Jetal. The effects of intercropping oat and wheat on growth and manganese nutrition of wheat[J]. Acta Ecologica Sinica, 2006, 26(2): 357-363.
[40] 魯耀, 趙平, 鄭毅, 等. 水旱輪作制下蠶豆/小麥間作對小麥錳吸收的影響[J]. 麥類作物學報 2010, 30(2): 372-377. Lu Y, Zhao P, Zheng Yetal. Effect of wheat and faba bean intercropping on manganese uptake of wheat under upland-paddy rotation[J]. Journal of Triticeae Crops, 2010, 30(2): 372-377.
[41] Gardner W K, Boundy K A. The acquisition of phosphorus byLupinesalbusL. Ⅳ. The effect of interplanting wheat and white lupine on the growth and mineral composition of the two species[J]. Plant and Soil, 1983, 70: 391-402.
[42] 魯耀, 鄭毅, 湯利, 等. 施氮水平對間作蠶豆錳營養及葉赤斑病發生的影響[J]. 植物營養與肥料學報, 2010, 16(2): 425-431. Lu Y, Zheng Y, Tang Letal. Effects of nitrogen application on manganese nutrition and occurrence of leaf spots of intercropped faba beans[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 425-431.
[43] 鄭甲成, 劉婷, 張百忍, 等. 幾種微量元素作用及對水稻發育的影響[J]. 吉林農業大學學報, 2010, 32(S): 5-8. Zheng J C, Liu T, Zhang B Retal. Several kinds of trace elements and their influence on rice growth[J]. Journal of Jilin Agricultural University, 2010, 32(S): 5-8.
[44] Rengel Z, Graham R D, Pedler J F. Manganese nutrition and accumulation of phenolics and lignin as related to differential resistance of wheat genotypes to the take-all fungus[J]. Plant and Soil, 1993, 151: 255-263.
Effect of intercropping with tillered onion on mineral nutrient uptake and gray mold disease occurrence of tomato
WU Xia1,2, WU Feng-zhi1*, ZHOU Xin-gang1
(1CollegeofHorticulture,NortheastAgriculturalUniversity,Harbin1510030,China2CollegeofAgronomy,HeilongjiangBayiAgriculturalUniversity,Daqing,Heilongjiang163319,China)
【Objectives】 Consecutive mono-culturing of tomato seriously affects its yield and quality in the protected tomato production in China. Tomato and onion intercropping is found effective in increasing tomato production, decreasing soil-borne disease and keeping healthy soil. Here the effect of their intercropping on tomato(LycopersiconesculentumMill.) and tillered onion(Alliumcepavar.agrogatumDon.)growth, mineral nutrient absorption and tomato gray mould disease incidence was studied. 【Methods】 A pot experiment was conducted in green house in 2012. Three culture modes were desinged: tomato and tillered onion intercropping, tomato monoculture and tillered onion monoculture. The growth indicators of tomato and tillered onion were investigated; the incidence and disease index of tomato gray mould disease were measured 30 days after the intercropping. The contents of total nitrogen, phosphorus, potassium and manganese were measured. The soil samples of rhizosphere of tomato and tillered onion were collected and the physical and chemical properties were measured. The activities of urease, acid phosphatase, dehydrogenase and polyphenol oxidase were measured using fresh soil samples which were stored in 4℃. 【Results】 1) Compared with the monocultures, the intercropping increases tomato plant height, shoot and root dry weights, and root activity significantly(P<0.05), decreases those of tillered onion significantly(P<0.05). The activities of soil dehydrogenase and polyphenol oxidase in the tomato rhizosphere are increased significantly(P<0.05), while those in the tillered onion rhizosphere are decreased significantly(P<0.05). There are no significant differences in the activities of soil urease and acid phosphatase between the rhizosphere of tomato and tillered onion. 2) In the intercropping, the contents of soil available nitrogen, phosphorus, potassium and manganese in the tomato rhizosphere are decreased significantly(P<0.05), the soil available phosphorus and available manganese in the rhizosphere of tillered onion are decreased significantly(P<0.05), and soil pH and organic matter of rhizosphere soil of tomato and available nitrogen, available potassium pH and organic matter of rhizosphere soil tillered of onion have no significant differences, compared to those of the monocropping. 3) Compared with corresponding mono-culture, the P and Mn contents in tomato and the N and Mn contents in tillered onion are increased significantly(P<0.05), not in other nutrients in the intercropping. 4) The tomato gray mold disease index in the intercropping is significantly decreased, and significantly and negatively correlated with plant Mn content(P<0.05), significantly and positively correlated with plant N/K and N/Mn ratios(P<0.01). 【Conclusions】 The intercropping improves the growth of tomato but restrains that of tillered onion. The phosphorus and manganese contents are increased significantly(P<0.05), and the N/K and N/Mn ratios in tomato plants are decreased significantly(P<0.05) in the intercropping. The tomato gray mold disease index in the intercropping is significantly decreased by the monocropping(P<0.05). So the tomato-tillered onion intercropping is an effective way for promoting tomato’s healthy growth.
intercropping;tomato;tillered onion;nutrients uptake;gray mold disease
2014-04-10 接受日期: 2014-10-16
國家自然科學基金項目(31172002); 哈爾濱科技局創新人才項目(2014RFXXJ004)資助。
吳瑕(1978—), 女, 黑龍江省肇東市人, 碩士, 講師, 研究方向為設施園藝及蔬菜生理生態。 Tel: 0459-6819184;E-mail: wuxiaxia_2005@163.com。* 通信作者 Tel: 0451-55190278;E-mail: fzwu2006@aliyun.com
S641.2;S633.2
A
1008-505X(2015)03-0734-09