999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

示蹤法測定九龍江河口沉積中硫酸鹽還原速率

2015-06-24 14:10:08尹希杰孫治雷徐勇航李云海邵長偉
海洋學報 2015年4期
關鍵詞:深度

尹希杰,孫治雷,徐勇航,李云海,邵長偉

(1. 國家海洋局 第三海洋研究所 海洋與海岸地質環境開放實驗室,福建 廈門361005;2.青島海洋地質研究所 國土資源部海洋油氣資源和環境地質重點實驗室,山東 青島266071;3. 山東省物化探勘查院,山東 濟南250013)

尹希杰1,孫治雷2,徐勇航1,李云海1,邵長偉3

(1. 國家海洋局 第三海洋研究所 海洋與海岸地質環境開放實驗室,福建 廈門361005;2.青島海洋地質研究所 國土資源部海洋油氣資源和環境地質重點實驗室,山東 青島266071;3. 山東省物化探勘查院,山東 濟南250013)

1 引言

河口海岸地區作為海陸的交匯地帶,有大量陸源有機物輸入,也具有高的初級生產力和沉積速率,因此其沉積物中有機質含量較高。這些有機質可以為不同的生物地球化學過程提供能量和電子供體,硫酸鹽還原過程就是其中之一[3,6—7,11]。據估計,河口海岸沉積物中約有一半的有機質是通過硫酸鹽還原反應的方式被礦化[6—7]。因此硫酸鹽還原是河口海岸帶沉積物中生物地球化學循環的主要組成部分,也是沉積物中硫元素生物地球化學循環的基礎[10,12]。

2 研究方法

2.1 樣品采集

圖1 采樣站位分布Fig.1 The locations of sampling sites in the Jiulong River Estuary

表1 兩個站位沉積環境參數

Tab.1 Characteristics of sampling localities

站位經緯度柱樣長/cm沉積物組成水深/m鹽度底層水溫度/℃溶解氧/mg·L-1A24°25′50 22″N,117°51′34 05″E50黏土、粉砂約2約4 0923 55 6B24°25′22 57″N,117°58′51 57″E88黏土、粉砂約4約23 322 86 9

2.2 孔隙水采集

2.3 沉積物中硫酸鹽還原速率(SRR)的測定

還原態無機硫的分離:沉積物中被還原的無機硫采用冷鉻還原-被動吸收法進行分離[4,7]。將離心后的沉積物樣品與20 mL N,N-二甲基甲酰胺(DMF)混合后,轉移到反應瓶中,將浸潤醋酸鋅溶液的玻璃纖維膜懸掛在反應瓶上部,用高純氮氣吹盡反應瓶中的氧氣,10 min之后加入20 mL 6 mol/dm3的 HCl和16 mL 1 mol/dm3的CrCl2溶液,總還原無機硫(TRIS,包括揮發性硫、黃鐵礦和元素S)以H2S的形式釋放出來,被吸附到玻璃纖維膜上。

取離心后的清液5 mL和吸附還原硫的玻璃纖維膜,分別加入5 mL閃爍液(Triton X-100),用液相閃爍計數儀(LS-6500)測定其活度值。沉積物中各層位硫酸鹽還原速率(SRR)用下面公式計算[4—5,19]:

24/t×1.06,

(1)

孔隙水甲烷濃度測定:在20 mL頂空瓶中預先加入3 mL 1 mol/dm3氫氧化鈉溶液,用來抑制沉積物產甲烷菌的活動,然后放入3 mL沉積物,丁基橡膠塞密封,壓蓋旋緊,搖勻后低溫保存。用氣密針抽取2 mL頂空的氣體,將針筒拔出后緩慢推出1 mL的氣體樣品,之后迅速將剩余1 mL氣體注入色譜進樣閥中,并按下start鍵開始測定。色譜條件:檢測器,FID,溫度300℃,進樣口溫度120℃,柱溫箱60℃,色譜柱為Porpark Q填充柱(2 m×3 mm,80/100目);載氣,99.999%氮氣,流速30 mL/min。每個樣品重復測2次,測定誤差±3.0%。沉積物中甲烷濃度根據孔隙度換算為單位體積孔隙水中含甲烷摩爾數(μmol/dm3)。

2.5 沉積物孔隙度、總有機碳(TOC)和氧化還原電位測定

沉積物孔隙度測定:將3 mL原始沉積物樣品放置于稱量瓶內稱重,于105℃放置24 h,恒重后稱量,計算樣品前后質量差??紫抖纫詥挝惑w積沉積物所含孔隙水的體積表示。

沉積物TOC測定:取一定量經冷凍干燥后的沉積物樣品,加入過量4 mol/dm3HCl,反應24 h。用去離子水洗酸3次,將樣品置于烘箱內60℃烘干,恒重后稱量樣品質量。稱取一定量磨勻的樣品,用元素分析儀(Vario EL III,德國制造)測定有機碳含量。每個樣品平行測定2次,測量誤差為±0.2%(n=5),TOC含量以有機碳占樣品總干重百分數表示。

沉積物氧化還原電位測定:在分樣過程中用EXTECH RE300氧化還原電位計探頭直接插入沉積物中測其氧化電位值。

3 結果

3.1 沉積物中硫酸鹽還原速率分布

A站位位于河口中段紅樹林潮灘附近,硫酸鹽還原速率從表層隨深度增加先增大后減小(見圖2),其值由表層的54 nmol/(cm3·d)逐漸增大到19 cm深度的2 345 nmol/(cm3·d);隨后硫酸鹽還原速率逐漸降低,55 cm深度降為121 nmol/(cm3·d)。B站位于河口下端海相區,其沉積物中硫酸鹽還原速率的最大值比A站位明顯偏低,在垂直剖面上的分布也有顯著的差異(見圖2)。B站位硫酸鹽還原速率在10 cm和78 cm深度附近出現兩個峰值,其值分別為843 nmol/(cm3·d)和987 nmol/(cm3·d)。對兩個站位測得的各層位沉積物中硫酸鹽還原速率進行積分,估算得A和B站位沉積物中硫酸鹽還原通量(以硫計)分別為527.9 mmol/(m2·d)和 357.1 mmol/(m2·d)。

圖2 A站位(?)和B站位(○)沉積物中硫酸鹽還原速率垂直分布Fig.2 Vertical profiles of sulfate reduction rates in sediments at A(?) and B(○) cores

3.2 孔隙水中硫酸鹽和甲烷濃度分布

3.3 沉積物氧化還原電位和總有機碳含量

硫酸鹽還原過程是在硫酸鹽還原菌為媒介的作用下進行的,而硫酸鹽還原菌屬于嚴格的厭氧細菌,因此沉積物中氧化還原電位變化對硫酸鹽還原菌活性有重要的影響,從而間接影響沉積物中硫酸鹽還原速率。圖4顯示,A站位表層沉積物(0~3 cm深度)的氧化還原電位為-87 mV,隨深度增加快速降低,在10 cm深度減小到-289 mV,之后隨深度增加沒有明顯的變化趨勢。B站位表層沉積物的氧化還原電位值為-12 mV,隨深度增加急劇減小,在28 cm深度附近減小到-245 mV,之后隨深度增加緩慢減小,至沉積物底部減小至-296 mV。兩個站位沉積物的氧化還原電位表明沉積物為厭氧的還原環境。圖4顯示A站位TOC含量的變化范圍1.51%~1.98%,平均值為1.75%;B站位TOC含量的變化范圍1.19%~1.61%,平均值為1.36%。

4 討論

4.1 九龍江河口硫酸鹽還原帶空間分布及環境控制因素

圖3 A站位(?)和B站位(○)孔隙水中甲烷和濃度垂直分布Fig.3 Vertical profiles of sulfate and methane concentration in pore water at A(?)and B(○) cores

圖4 A站位(?)和B站位(○)沉積物中TOC和氧化還原電位垂直分布Fig.4 Vertical profiles of TOC and Eh in sediments of A (?)and B(○) cores

4.1 九龍江河口硫酸鹽還原速率及環境控制因素

(2)

(3)

因此在A站位從沉積物表層至20 cm深度存在高的硫酸鹽還原速率,20 cm深度以下,隨著孔隙水中硫酸鹽濃度快速的減小,硫酸鹽還原速率隨著深度的增加也呈現減小的趨勢。

表2 世界不同地區沉積物硫酸鹽還原速率最大值

B站位沉積物的上部(約20 mm)和下部(約78 mm)分別存在較高的硫酸鹽還原速率,但其峰值均低于A站位的最大值。這兩個高的硫酸鹽還原速率是由不同的硫酸鹽還原路徑所導致[33—35],上部硫酸鹽還原作用主要由氧化降解沉積物活性有機質而產生;隨著深度增加,硫酸鹽濃度逐漸降低,沉積物中剩余的部分難降解的有機質經發酵產生甲烷[36],B站位在60 cm深度以下孔隙水中甲烷濃度表現出隨著深度而逐漸增加的趨勢,生成的甲烷在向上層擴散的過程中,在78cm深度附近發生硫酸鹽還原與甲烷厭氧氧化的耦合作用,化學計量式可以表示如下[35—36]:

(4)

在該層位硫酸鹽還原和甲烷厭氧氧化同時進行,導致硫酸鹽還原速率的第二個極大值[987 nmol/(cm3·d)]的出現。對B站位沉積物中活性古菌的群落組成進行研究,發現該層位以甲烷厭氧氧化菌 ANME-2a 為主,進一步驗證了該層位甲烷厭氧氧化和硫酸鹽還原耦合的存在[37]。沉積物中的有機質都是經由水體沉降礦化之后而逐漸被埋藏,B站位水深明顯大于A站位,水體中活性有機質被埋藏之前在水柱沉降過程中被大量氧化而消耗[38],最后進入沉積物厭氧帶中的有機質主要以難降解長鏈化合物為主[39],因此B站位沉積物中有機質埋藏的通量和有機質活性都比A站位降低[24],因此沉積物中沒有足夠活性有機質為硫酸鹽還原提供的電子供體,硫酸鹽還原菌的活性受到抑制,導致該站位沉積物上部硫酸鹽還原速率相對A站位偏低,對一些海洋和湖沉積物研究結果也表明硫酸鹽還原速率主要受到新沉降的有機質通量及活性所控制[10—12,28,33,40—41]。其次A站位表層沉積物溫度(23.5℃)高于B站位(22.8℃),已有的研究顯示在溫度低于36℃時,沉積物中硫酸鹽還原速率與溫度存在正相關性[12,16,28,42]。因此A站位和B站位沉積物中硫酸鹽還原反應速率的差異,反映了該地區沉積物中硫酸鹽還原的速率受到有機質埋藏的通量和活性以及沉積物溫度的綜合影響。

4.3 九龍江河口硫酸鹽還原對有機質礦化通量的估算

國內外對河口海岸沉積物有機質礦化路徑進行了大量的研究[47—49],其中對硫酸鹽還原研究最為廣泛和深入,其原因是硫酸鹽還原一直被認為是河口海岸地區有機質厭氧礦化最主要的方式[3,6—7,10,39]。大量研究發現河口海岸地區通過硫酸鹽還原礦化的有機質量占到有機質礦化總量的(62±17)%[3,6,50]。如在缺氧的黑海、智利陸架和納米比亞近海上升流區,沉積物乃至深部水柱中的有機質幾乎都是由硫酸鹽還原的方式礦化[51—53]。本研究分別對A和B兩個站位各層位硫酸鹽還原速率進行積分計算,得到兩個站位硫酸鹽還原通量(以硫計)分別為 527.9 mmol/(m2·d)和 357.1 mmol/(m2·d)。沉積物中硫酸鹽還原主要通過有機質礦化和甲烷厭氧氧化兩種方式進行,反應關系式如下:

(2)

(4)

CH3COOH→CH4+CO2.

(5)

表3 世界不同地區沉積物中硫酸鹽還原通量

續表3

5 結論

(1)九龍江河口沉積物中硫酸鹽還原帶深度,隨著上覆水鹽度的增加而逐漸增大,表明該地區硫酸鹽還原深度分布主要受到上覆水體硫酸鹽濃度控制。近岸紅樹林地區沉積物中硫酸鹽還原速率最大值明顯高于河口下端海相區,表明硫酸鹽還原速率主要受到沉積物中有機質濃度和活性以及溫度等環境因素的影響。

(2)通過對兩個站位硫酸鹽還原帶中不同層位硫酸鹽還原速率積分計算,表明九龍江河口沉積物中存在較高的硫酸鹽還原通量,硫酸鹽還原作用在九龍江河口沉積物有機質礦化中具有重要的作用。

[1] Vairavamurthy M A,Orr W L,Manowitz B. Geochemical transformation of sedimentary sulfur: an introduction[M]// Vairavamurthy M A,Schoonen M A A. Geochemical Tranformation of Sedimentary Sulfur. Washington,DC: ACS Symposium,1995: 1-17.

[2] Bottrell S H,Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J]. Earth-Science Reviews,2006,75(1/4): 59-83.

[3] J?rgensen B B. The sulfur cycle of coastal marine sediment (Limfjorden,Denmark)[J]. Limnology and Oceanography,1977,22(5): 814-832.

[4] Kallmeyer J,Ferdelman T G,Weber A,et al. A cold chromium distillation procedure for radio labeled sulfide applied to sulfate reduction measurements[J]. Limnology and Oceanography Methods,2004,2: 171-180.

[5] Fossing H,J?rgensen B B. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method[J]. Biogeochemistry,1989,8(3): 205-222.

[6] J?rgensen B B,Fenchel T. The sulfur cycle of a marine sediment model system[J]. Marine Biology,1974,24(3): 189-201.

[7] Sweeney R E,Kaplan I R. Diagenetic sulfate reduction in marine sediments[J]. Marine Chemistry,1980,9(3): 165-174.

[8] Berner R A. Sulfate reduction and the rate of deposition of marine sediments[J]. Earth and Planetary Science Letters,1978,37(3): 492-498.

[9] Bowles M W,Samarkin V A,Bowles K M,et al. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation[J]. Geochimica et Cosmochimica Acta,2011,75(2): 500-519.

[10] Lee T,Hyun J H,Mok J S,et al. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin,East/Japan Sea[J]. Geo-Marine Letters,2008,28(3): 153-159.

[11] Meister P,Liu B,Ferdelman T G,et al. Control of sulphate and methane distributions in marine sediments by organic matter reactivity[J]. Geochimica et Cosmochimica Acta,2013,104: 183-193.

[12] Al-Raei A M,Bosselmann K,B?ttcher M E,et al. Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter[J]. Ocean Dynamics,2009,59(2): 351-370.

[13] Gribsholt B,Kristensen E. Benthic metabolism and sulfur cycling along an inundation gradient in a tidalSpartinaanglicasalt marsh[J]. Limnology and Oceanography,2003,48(6): 2151-2162.

[14] Thang N M,Brüchert V,Formolo M,et al. The impact of sediment and carbon fluxes on the biogeochemistry of methane and sulfur in Littoral Baltic Sea Sediments (Himmerfj?rden,Sweden)[J]. Estuaries and Coasts,2013,36(1): 98-115.

[15] 孫炳寅,經美德. 廢黃河口鹽沼土硫酸鹽還原速率的研究[J]. 應用生態學報,1990,1(3): 248-253.

Sun Bingyin, Jing Meide. A study on sulfate reduction in salt marsh near the estuary of obsolete Huanghe River[J]. Chinese Journal of Applied Ecology, 1990, 1(3):248-253.

[16] Wu Z J,Zhou H Y,Peng X T,et al. Rates of bacterial sulfate reduction and their response to experimental temperature changes in coastal sediments of Qi’ao Island,Zhujiang River Estuary in China[J]. Acta Oceanologica Sinica,2014,33(8): 10-17.

[17] 程思海,陸紅鋒. 海洋沉積物孔隙水的制備方法[J]. 巖礦測試,2005,24(2): 102-104.

Cheng Sihai, LU Hongfeng. Techniques for marine sediment pore-water sampling[J]. Rock and Mineral Analysis, 2005, 24(2):102-104.

[18] 吳自軍,周懷陽,彭曉彤,等. 甲烷厭氧氧化作用: 來自珠江口淇澳島海岸帶沉積物間隙水的地球化學證據[J]. 科學通報,2006,51(17): 2052-2059.

Wu Zijun,Zhou Huaiyang,Peng Xiaotong,et al.Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island(Pearl River Estuary), southern China[J]. Chinese Science Bulletin, 2006, 51(17): 2052-2059.

[19] Schulz H D,Zabel M. Marine Geochemistry[M]. Berlin: Springer,2006: 198-199.

[20] 張勝,張翠云,張云,等. 地質微生物地球化學作用的意義與展望[J]. 地質通報,2005,24(10/11): 1027-1031.

Zhang Sheng, Zhang Cuiyun, Zhang Yun, et al. Geomicrobial geochemical processes: Significance and prospects[J]. Regional Geology of China, 2005, 24(10/11):1027-1031.

[21] Froelich P N,Klinkhammer G P,BenderM L,et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J]. Geochimica et Cosmochimica Acta,1979,43(7): 1075-1090.

[22] Canfield D E. Organic matter oxidation in marine sediments[C]∥Wollast R,Mackenzie F T,Chou L,et al. Interactions of C,N,P and S Biogeochemical Cycles and Global Change. Berlin Heidelberg: Springer-Verlag,1993: 333-363.

[23] Burdige D J. Geochemistry of Marine Sediments[M]. USA: Princeton University Press,2006.

[24] 尹希杰,陳堅,郭瑩瑩,等. 九龍江河口沉積物中硫酸鹽還原與甲烷厭氧氧化:同位素地球化學證據[J]. 海洋學報,2011,33(4): 121-128.

Yin Xijie, Chen Jian, Guo Yingying, et al. Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Haiyang Xuebao, 2011,33(4),121-128.

[25] Wijsman J W M,Middelburg J J,Herman P M J,et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry,2001,74(4): 261-278.

[26] 尹希杰,周懷陽,楊群慧,等. 珠江口淇澳島海岸帶沉積物中硫酸鹽還原和不同形態硫的分布[J]. 海洋學報,2010,32(3): 31-39.

Yin Xijie, Zhou Huaiyang, Yang Qunhui, et al. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi’ao Island in the Zhujiang Estuary in China[J]. Haiyang Xuebao, 2010, 32(3):31-39.

[27] Marvin-DiPasquale M C,Boynton W R,Capone D G. Benthic sulfate reduction along the Chesapeake Bay central channel. Ⅱ. Temporal controls[J]. Marine Ecology Progress Series,2003,260: 55-70.

[28] Beck M,Dellwig O,Liebezeit G,et al. Spatial and seasonal variations of sulphate,dissolved organic carbon,and nutrients in deep pore waters of intertidal flat sediments[J]. Estuarine,Coast Shelf Science,2008,79(2): 307-316.

[29] Manous J J,Gantzer C J,Stefan H G. Spatial Variation of Sediment Sulfate Reduction Rates in a Saline Lake [J]. Journal of Environmental Engineering,2007,133(12): 1106-1116.

[30] Edenborn H M,Silverberg N,Mucci A,et al. Sulfate reduction in deep coastal marine sediments[J]. Marine Chemistry,1987,21(4): 329-345.

[31] Coleman M L,Raiswell R. Source of carbonate and origin of zonation in pyritiferous carbonate concretions: evaluation of a dynamic model[J]. American Journal of Science,1995,295(3): 282-308.

[32] Pallud C,Cappellen P V. Kinetics of microbial sulfate reduction in estuarine sediments[J]. Geochimica et Cosmochimica Acta,2006,70(5): 1148-1162.

[33] Schubert C S,Ferdelman T G,Strotmann B. Organic matter composition and sulfate reduction rates in sediments off Chile[J]. Organic Geochemistry,2000,31(5): 351-361.

[34] Canfield D E. Sulfate reduction in deep sea sediments[J]. American Journal of Science,1991,291(2): 177-188.

[35] Devol A H,Ahmend S I. Are high rates of sulphate reduction associated with anaerobic oxidation of methane? [J]. Nature,1981,291(5814): 407-408.

[36] Pohlman J W,Ruppel C,Hutchinson D R,et al. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico[J]. Marine and Petroleum Geology,2008,25(9): 942-951.

[37] Li Q Q,Wang F P,Chen Z W,et al. Stratified active archaeal communities in the sediments of Jiulong river estuary China[J]. Frontiers in Microbiology,2012,3: 311.

[38] Wenzhofer F,Glud R N. Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade[J]. Deep-Sea Research,2002,49(7): 1255-1279.

[39] Jahnke R A. The global ocean flux of particulate organic carbon: A real distribution and magnitude[J]. Global Biogeochemical Cycles,1996,10(1): 71-88.

[40] Hadas O. Sulfate reduction in Lake Agmon,Israel[J]. Science of the Total Environment,2001,266(1/3): 203-209.

[41] Julies E M,Fuchs B M,Arnosti C,et al. Organic carbon degradation in anoxic Organic-Rich shelf sediments: Biogeochemical rates and microbial abundance[J]. Geomicrobiology Journal,2010,27(4): 303-314.

[42] Sawicka1 J E,J?rgensen B B,Brüchert V. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments[J]. Biogeosciences,2012,9(8): 3425-3435.

[43] Weber A,J?rgensen B B. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin,Gulf of California,Mexico[J]. Deep-Sea Research I,2002,49(5): 827-841.

[44] Treude T,Niggemann J,Kallmeyer J,et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta,2005,69(11): 2767-2779.

[45] Bertics V J,Ziebis W. Bioturbation and the role of microniches for sulfatereduction in coastal marine sediments[J]. Environmental Microbiology,2010,12(11): 3022-3034.

[46] Laverman A M,Pallud C,Abell J. et al. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments[J]. Geochimica et Cosmochimica Acta,2012,77: 474-488.

[47] Hines M E,Knollmeyer S L,Tugel J B. Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh[J]. Limnology and Oceanography,1989,34(3): 578-590.

[48] Maltby E,Immirzi C P. Carbon dynamics in peatlands and other wetlands soils: regional and global perspectives[J]. Chemosphere,1993,27(6): 999-1023.

[49] Hyun J H,Smith A C,Kostka J E. Relative contributions of sulfate-and iron(III) reduction to organic matter minrtalization and process controls in contrasting habitats of the Georgia saltmarsh[J]. Applied Geochemistry,2007,22(12): 2637-2651.

[50] Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[J]. Advances in Microbiology and Ecology,2000,16: 41-84.

[51] Weber A,Riess W,Wenzhoefer F,et al. Sulfate reduction in Black Sea sediments:Insituand laboratory radiotracer measurements from the shelf to 2000 m depth[J]. Deep-Sea Research,2001,48(9): 2073-2096.

[52] Bruchert V,Gorgensen B B,Neumann K,et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone[J]. Geochimica et Cosmochimica Acta,2003,67(23): 4505-4518.

[53] Zopfi J,B?ttcherM,J?rgensen B B. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile[J]. Geochimica et Cosmochimica Acta,2008,72(3): 827-843.

[54] Devol A H,Anderson J J,Kuivila K,et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta,1984,48(5): 993-1004.

[55] Iversen N,J?rgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography,1985,30(5): 944-955.

[56] Alperin M J,Reeburgh W S,Whiticar M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biogeochemical Cycles,1988,2(3): 279-288.

[57] Thode-Andersen S,J?rgensen B B. Sulfate reduction and the formation of 35S-labeled FeS,FeS2,and So in coastal marine sediments[J]. Limnology and Oceanography,1989,34(5): 793-806.

[58] J?rgensen B B,Bang M,Blackburn H T. Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition[J]. Marine Ecology Progress Series,1990,59: 39-54.

[59] Oenema O. Sulfate reduction in fine-grained sediments in the Eastern Scheldt,southwest Netherlands[J]. Biogeochemistry,1990,9(1): 53-74.

[60] Roden E E,Tuttle J H. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments[J]. Marine Ecology Progress Series,1993,93: 101-118.

[61] Fossing H,Ferdelman T G,Berg P. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia) [J]. Geochimica et Cosmochimica Acta,2000,64(5): 897-910.

[62] J?rgensen B B,Weber A,Zopfi J. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments[J]. Deep-Sea Research,2001,48(9): 2097-2120.

[63] Mazumdar A,Paropkari A L,Borole D V,et al. Pore-water sulfate concentration profiles of sediment cores from Krishna-Godavari and Goa basins,India[J]. Geochemical Journal,2007,41: 259-269.

[64] Bowles M W,Samarkin V A,Bowles K M. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation[J]. Geochimica et Cosmochimica Acta,2011,75(2): 500-519.

[65] Crill P M,Martens C S. Biogeochemical cycling in an organic-rich coastal marine basin. 6. Temporal and spatial variations in sulfate reduction rates[J]. Geochimica et Cosmochimica Acta,1987,51(5): 1175-1186.

[66] Takii S,Tanaka H,Kohata K,et al. Seasonal changes in sulfate reduction in sediments in the Inner Part of Tokyo Bay[J]. Microbes and Environments,2002,17(1): 10-17.

[67] Panutrakul S,Monteny F,Baeyens W,et al. Seasonal variations in sediment sulfur cycling in the Ballastplaat Mudflat,Belgium[J]. Estuaries,2001,24(2): 257-265.

Measurement of sulfate reduction rate in coastal sediments of Jiulong River Estuary with a radiotracer technique

Yin Xijie1,Sun Zhilei2,Xu Yonghang1,Li Yunhai1,Shao Changwei3

(1.OpenLaboratoryofOcean&CoastEnvironmenttalGeology,ThirdInstituteofOceanographyStateOceanicAdministration,Xiamen361005,China; 2.KeyLaboratoryofMinistryofLandandResourcesforMarineOilGasResourcesandEnvironmentalGeology,QingdaoInstituteofMarineGeology,Qingdao266071,China; 3.ShandongGeophysicalandGeochemicalExplorationInstitute,Jinan250013,China)

sulfate reduction rate; sulfate; anaerobic methane oxidation; Jiulong River Estuary

10.3969/j.issn.0253-4193.2015.04.008

2014-03-31;

2014-09-23。

國家青年基金(41006072,41276059);福建省青年基金項目(2010J05095)。

尹希杰(1977—),男,山東省濰坊市人,副研究員,主要研究方向為海洋生物地球化學。E-mail:yinxijie2003@163.com

P736.41

A

0253-4193(2015)04-0083-11

Yin Xijie,Sun Zhilei,Xu Yonghang,et al. Measurement of sulfate reduction rate in coastal sediments of Jiulong River Estuary with a radiotracer technique[J]. Haiyang Xuebao,2015,37(2):83—93,doi:10.3969/j.issn.0253-4193.2015.04.008

猜你喜歡
深度
深度理解不等關系
四增四減 深度推進
深度理解一元一次方程
深度觀察
深度觀察
深度觀察
深度觀察
芻議深度報道的深度與“文”度
新聞傳播(2016年10期)2016-09-26 12:14:59
提升深度報道量與質
新聞傳播(2015年10期)2015-07-18 11:05:40
微小提議 深度思考
主站蜘蛛池模板: 日本精品影院| 国产内射一区亚洲| 香蕉久久国产超碰青草| 青青草原国产| 国产区精品高清在线观看| 日韩精品一区二区三区大桥未久| 内射人妻无套中出无码| 一级毛片免费播放视频| 97精品久久久大香线焦| 亚洲乱亚洲乱妇24p| 免费A∨中文乱码专区| 欧美在线视频a| 亚洲综合国产一区二区三区| 欧美日韩北条麻妃一区二区| 在线免费观看AV| 国产精品自拍露脸视频| 亚洲综合婷婷激情| 一级一级一片免费| 久久男人资源站| 欧美日韩一区二区在线播放| 无码不卡的中文字幕视频| 日本国产在线| www.91中文字幕| 欧美精品啪啪一区二区三区| 丰满人妻一区二区三区视频| 午夜福利免费视频| 成年人免费国产视频| 亚洲一级毛片免费看| 亚洲an第二区国产精品| 怡春院欧美一区二区三区免费| 热re99久久精品国99热| 亚洲成a人在线观看| 国产美女精品在线| 亚洲熟女偷拍| 无码高清专区| 精品国产自| 99精品福利视频| 国产日韩久久久久无码精品| 国产91九色在线播放| 国产免费a级片| 欧美在线三级| 秋霞一区二区三区| 日韩免费中文字幕| 色视频久久| 国产欧美一区二区三区视频在线观看| 97在线免费| 欧美一区二区人人喊爽| 久久久久亚洲AV成人人电影软件| 免费国产一级 片内射老| 亚洲综合色吧| 亚洲第一视频网| 亚洲天堂免费在线视频| 人妻精品全国免费视频| 在线欧美日韩| 狠狠色成人综合首页| 香蕉伊思人视频| 国产美女主播一级成人毛片| 97青草最新免费精品视频| 成年免费在线观看| 九色视频在线免费观看| 白浆视频在线观看| 亚洲一区二区三区国产精品 | 国产福利拍拍拍| 高清无码一本到东京热| 波多野结衣亚洲一区| 九色国产在线| 亚洲国产精品日韩av专区| 亚洲男人天堂久久| 99久久精彩视频| 美女无遮挡拍拍拍免费视频| 国产呦精品一区二区三区下载 | 欧美一级黄片一区2区| 97se综合| 亚洲国产中文欧美在线人成大黄瓜| 国产人成网线在线播放va| 无码又爽又刺激的高潮视频| 国产AV无码专区亚洲A∨毛片| 九九热精品在线视频| 97亚洲色综久久精品| 91亚洲精品国产自在现线| 精品色综合| 国产午夜不卡|