馮凱,路浩軍,賈海英,鄭燕華,張軍,景青萍,吳繼華
rs10795668單核苷酸多態性與中國北方漢族結直腸癌易感性的關系
馮凱,路浩軍,賈海英,鄭燕華,張軍,景青萍,吳繼華
目的探討rs10795668單核苷酸多態性與北方漢族人群結直腸癌遺傳易感性的關系。方法采用聚合酶鏈反應-限制性片斷長度多態性方法,檢測結直腸癌組182例(結腸癌113例,直腸癌69例)和對照組192例的rs10795668單核苷酸多態性基因型。采用非條件logistic回歸分析進行基因-疾病關聯分析與基因-性別交互作用分析。結果rs10795668多態性位點在結直腸癌患者中的基因型分布與在正常健康對照人群中的基因型分布差異無統計學意義,但基因型與性別在結腸癌中存在交互作用,AA+AG基因型增加女性結腸癌的發生危險(OR=3.05,95%CI 1.47~6.35;P=0.00078)。結論rs10795668單核苷酸多態性的AA+AG基因型與中國北方漢族女性結腸癌遺傳易感性有關,與直腸癌無關。
單核苷酸多態性;結直腸腫瘤;遺傳易感性
結直腸癌(colorectal cancer,CRC)是全球發病率最高的腫瘤之一[1],每年約有120萬人罹患結直腸癌,并導致60萬人死亡[2]。病因學上,多種遺傳和環境因子可導致結直腸癌的發生[3-6]。
基因組計劃完成以來,在候選基因策略研究中雖然發現了一些風險遺傳位點,但可重復、功能確定的位點依然有限。近來,全基因組關聯研究迅猛發展,已報道了多個常見的大腸癌易感遺傳位點,包括5q31.1,8q23.3,8q24.21,10p14,10q22.3,10q25.2,11q12.2,11q23.1,12p13.31,14q22.3,15q13.3,16q22.1,18q21.1,17p13.3,19q13.2、20p12.3等[7-15]。在上述位點中,位于10p14的單核苷酸多態性(SNP)rs10795668是最早發現的風險因子之一[12]。大量的重復研究顯示,rs10795668在不同族群乃至同一族群中的結果并不一致[16-18]。針對多數東亞人群包括中國人群的研究顯示rs10795668與結直腸癌易感性有關[19-20],這與歐洲人群相似,而與非洲人群不同。本研究采用182例結直腸癌患者與192例對照進行rs10795668的關聯重復研究,并對解剖位置分層,進行了性別與基因的交互作用分析。
1.1 研究對象 所有病例均來自2011-2014年解放軍306醫院普通外科與腫瘤科收治的手術或化療的北方漢族結直腸癌患者,病理組織類型均為原發腺癌,182例結直腸癌病例中包括113例結腸癌(男63例,女50例,年齡64.6±14.1歲)與69例直腸癌(男40例,女29例,年齡67.0±11.9歲),選取192例與病例組年齡、性別比例接近的北方漢族健康體檢人員做對照。為排除遺傳分層因素,所有入選者均經詳細問卷調查,以查明其疾病史并排除有腫瘤病史者。樣本采用EDTA抗凝全血。本研究經解放軍第306醫院倫理委員會認可。
1.2 基因型分析 采用酚-氯仿法提取結直腸癌患者與正常對照者外周血白細胞基因組DNA,-70℃保存備用。限制性片段長度多態性方法設計采用在線工具SNP-RFLPing2(http://bio.kuas.edu.tw/snp-rflping2/ rflpUI.jsp.)。參考序列為(chr10:8700719-8701719),版本號為GRCh37/hg19。引物序列如下:上游引物5'-TGAGGCTTATTGAAAACAATGG-3',下游引物5'-GCAGAGGTTGCATGCAGTG-3'。采用TaKaRa公司RCR試劑盒進行PCR反應。反應體系為25μl,PCR反應條件為:94℃5min;94℃30s,58℃30s,72℃30s,共16個循環;94℃30s,56℃退火40s,72℃40s,20個循環,最后72℃10min,4℃保存。以上反應在GeneAmp PCR system 9700型(美國PE應用生物系統公司)基因擴增儀上進行。PCR產物大小為293bp,限制性內切酶為AluⅠ,完全酶切產物為180bp和114bp兩個片段。PCR反應后取產物10μl,采用限制性內切酶進行酶切,37℃水浴,過夜。酶切產物用2%瓊脂糖凝膠電泳,并以ChampGel全自動凝膠成像分析儀觀察記錄電泳結果。對三種基因型各取5例進行測序證實(北京三博遠志生物工程公司)。
1.3 rs10795668 SNP的基因組注釋和連鎖不平衡(linkage disequilibrium,LD)分析 基因組注釋采用UCSC基因組瀏覽器(http://genome.ucsc.edu/cgibin/hgGateway),參考版本號為GRCh37/hg19。LD分析采用SNAP網絡工具(http://www.broadinstitute. org/mpg/snap/ldplot.php),參數設置選擇Regional LD Plots,SNP data set設為1000 genomes pilots,Population panel設為CHBJPT,r2設為0.6,Distance limit設為100kb。
1.4 統計學處理 用χ2檢驗分析對照組人群基因型分布是否符合Hardy-Weinberg(H-W)平衡,以判斷其對整體人群的代表性。基因疾病關聯分析采用非條件logistic回歸模型,計算共顯性、顯性、隱性、超顯性遺傳模式下的比數比(odds ratios,OR)及95%可信區間(confidential intervals,CI)。對疾病類型與性別進行分層,并采用logistic回歸模型進行基因-性別交互作用分析,所有統計皆采用SNPStats在線關聯研究工具進行分析[21]。以上檢驗顯著性水準均采用α=0.05。
2.1 一般特征 結直腸癌組與對照組之間性別、年齡構成相似(P>0.05,表1)。所有標本均成功進行了基因型分型(圖1),對部分結果進行了測序驗證,所有重復分型結果均與原結果相符。χ2檢驗顯示,健康對照組rs10795668基因型分布符合H-W平衡(P=0.75)。

表1 結直腸癌組與對照組性別、年齡分布及腫瘤部位Tab.1 Distributions of sex and age among CRC patients and controls, and the tumor site in CRC patients

圖1 rs107595668基因多態性分析Fig.1 Genotype analysis of rs10795668 polymorphismM. DL2000 DNA ladder; Lane1-2. A/A homozygous (180bp and 114bp); Lane 3-5. G/A heterozygous (293bp, 180bp and 114bp); Lane 6-7. G/G homozygous (293bp)
2.2 rs10795668 SNP與結直腸癌及結、直腸癌亞組的關聯研究 rs10795668 SNP的G/G、G/A和A/A基因型頻率在結直腸癌組與對照組之間,各種遺傳模式下差異均無統計學意義(表2)。將結腸癌和直腸癌患者分成兩個亞組分別與對照組進行關聯分析在四種遺傳模式下差異亦無統計學意義(數據未列出)。以上分析均校正了年齡和性別因素。

表2 rs10795668單核苷酸多態性與結直腸癌的關聯分析(n=374)Tab.2 Association analysis of rs10795668 with CRC (n=374)
2.3 rs10795668 SNP在結直腸癌及結、直腸癌亞組中的基因-性別交互作用研究 結直腸癌rs10795668 SNP與性別的交互作用采用logistic回歸模型進行分析,結果顯示,在顯性遺傳模式下,結直腸癌rs10795668 SNP與性別存在交互作用,攜帶A等位基因(G/A+A/A)的女性患結直腸癌比不攜帶A等位基因的女性的高(OR=1.81,95% CI 1.00~3.29,P=0.0089,表3),在其他三種遺傳模式下未觀察到交互作用(數據未提供)。為了觀察這種交互作用是否與結直腸癌亞型有關,分別進行了結、直腸癌亞組中的基因-性別交互分析,結果顯示,顯性遺傳模式下,rs10795668 SNP與性別存在交互作用主要體現在結腸癌亞組(OR=3.05,95% CI 1.47~6.35,P=0.00078,表4),直腸癌亞組沒有顯著交互作用(表5),即其他條件相同的情況下攜帶A等位基因的女性更易發生結腸癌。以上分析均校正了年齡因素。

表3 Logistic回歸分析結直腸癌基因和性別的交互作用(n=374)Tab.3 Interaction of gene-sex involved in CRC (logistic regression analysis,n=374)

表4 Logistic回歸分析結腸癌基因和性別的交互作用(n=305)Tab.4 Interaction of gene-sex involved in colon cancer (logistic regression analysis,n=305)

表5 Logistic回歸分析直腸癌基因和性別的交互作用(n=261)Tab.5 Interaction of gene-sex involved in rectal cancer (logistic regression analysis,n=261)
2.4 rs10795668 SNP基因組注釋與LD分析
rs10795668位于10號染色體8701219位(圖2),LD范圍54.3kb(r2≥0.6,圖3),距離rs10795668最近的基因是編碼tRNA的RNA5SP299(2.4kb)。最近的編碼蛋白的基因是GATA3,此為重要的轉錄因子,距rs10795668位點585.2kb。

圖2 UCSC基因組瀏覽器所示rs10795668參考序列Fig.2 The UCSC genome browser view of chr10: 8,000,000-9,000,000 (build 37) containing rs10795668The red rectangle represents susceptibility SNP rs10795668. The UCSC Gene track shows multiple transcripts span around rs10795668. The nearest gene is a tRNA gene,RNA5SP299. The blue underline show 2 lincRNA genes located in 200kb upstream and downstream, respectively. The nearest coding protein gene is GATA3, underlined by purple line. The light blue rectangle shows the reported eQTL gene, ATP5C1 (Loo LW, 2012)

圖3 rs107595668的LD范圍示意圖(r2≥0.6)Fig. 3 Regional LD plot for SNPs rs107595668 at 10p14, associated with colorectal cancer (r2≥0.6)
本研究結果顯示,rs10795668SNP多態位點在結直腸患者中的基因型分布與正常對照樣本差異無統計學意義,但基因型與性別在結腸癌中存在交互作用,A等位基因型增加了中國北方漢族女性結腸癌的發生危險。
rs10795668SNP與結直腸癌關聯的報道最早見于2008年在歐洲人群中的一項GWAS研究[12],隨后在不同人群中進行了多個重復研究工作,其中有很多矛盾的報道[15-24]。rs10795668人群分布差異很大,千人基因組計劃數據(http:// browser.1000genomes.org/index.html)顯示,rs10795668 A等位基因在歐洲人群約為32%,東亞洲人群為37%,西亞人群為22%,非洲人群為2%。通常報道,在歐洲和亞洲G為易感等位基因,而在非洲A為易感等位基因。因此,種族因素與結直腸癌易感性密切相關。雖然最近有Meta分析顯示,在中國人群中,rs10795668 SNP與結直腸癌相關[17],且G等位基因增加結腸癌的發病風險,但本研究沒有重復出這樣的結果,且在進一步對樣本進行分層分析和基因型與性別的交互作用研究中,發現A等位基因極為顯著地增加女性結腸癌的發病風險,這在其他研究中尚未見報道。結腸癌與直腸癌一般統稱結直腸癌,但這兩者的發病機制可能存在差異[25],并且性別可能是影響其易感性的重要因素之一[26]。
rs10795668并不位于某一基因附近,所以其功能研究是個難點。生物信息學分析顯示,rs10795668位于10號染色體8701219位,LD范圍54.3kb(r2≥0.6)。最近的編碼蛋白的基因是GATA3,它是個重要的轉錄因子。目前只有1 篇rs10795668功能研究的報道[27],該報道顯示rs10795668等位基因與ATP5C1的表達水平相關。但是,由于ATP5C1與rs10795668的相對距離較遠,間隔數個轉錄子,包括GATA3和多個lincRNA轉錄子,這些都是重要的調控因子,特別是lincRNA近來是研究調控靶基因表達的熱點[28-29],因此ATP5C1表達水平是否真與rs10795668等位基因關聯還需要進一步確認。另外,rs10795668作為遺傳標記的 LD范圍為54.3kb(r2≥0.6),在其關聯范圍內,就只有編碼tRNA的RNA5SP299基因,但目前關于tRNA與基因多態性的研究還鮮有報道。
本研究對結直腸癌患者樣本分層,并與性別和rs10795668不同等位基因進行交互作用研究,提示A等位基因增加中國北方漢族女性結腸癌的易感性,相關機制有待進一步探索。
[1]Xin L, Bai Y, Li ZS. Advances in colorectal cancer risk factors[J]. Chin J Pract Intern Med, 2014, 34(12): 1214-1218. [辛磊, 柏愚,李兆申. 結直腸癌危險因素研究進展[J]. 中國實用內科雜志, 2014, 34(12): 1214-1218.]
[2]Jemal A, Bray F, Center MM,et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90.
[3]de la Chapelle A. Genetic predisposition to colorectal cancer[J]. Nat Rev Cancer, 2004, 4(10): 769-780.
[4]Lichtenstein P, Holm NV, Verkasalo PK,et al. Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland[J]. N Engl J Med, 2000, 343(2): 78-85.
[5]Wang H, Fu ZX, Lu WD,et al. Effect and mechanism of Prdx2 on proliferation and apoptosis of colorectal cancer cell line SW480[J]. Med J Chin PLA, 2014, 39(4): 293-296. [王昊, 傅仲學, 盧偉東, 等. Prdx2在結直腸癌細胞增殖、凋亡中的作用及其機制研[J]. 解放軍醫學雜志, 2014, 39(4): 293-296.]
[6]Wang RH, Xie JG, Fu Q,et al. Expression of Ang-2, Tie-2 mRNA and K-ras gene mutation in human colorectal cancer tissue[J]. J Zhengzhou Univ(Med Sci), 2013, 48(5): 629-632. [王瑞華, 謝建國, 付強, 等. 結直腸癌組織中Ang-2、Tie-2 mRNA的表達及K-ras基因突變的檢測[J]. 鄭州大學學報(醫學版), 2013, 48(5): 629-632.]
[7]Zanke BW, Greenwood CM, Rangrej J,et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24[J]. Nat Genet, 2007, 39(8): 989-994.
[8]Tomlinson I, Webb E, Carvajal-Carmona L,et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21[J]. Nat Genet, 2007, 39(8): 984-988.
[9]Broderick P, Carvajal-Carmona L, Pittman AM,et al. A genomewide association study shows that common alleles of SMAD7 influence colorectal cancer risk[J]. Nat Genet, 2007, 39(11): 1315-1317.
[10] Jaeger E, Webb E, Howarth K,et al. Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk[J]. Nat Genet, 2008, 40(1): 26-28.
[11] Tenesa A, Farrington SM, Prendergast JG,et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21[J]. Nat Genet, 2008, 40(5): 631-637.
[12] Tomlinson IP, Webb E, Carvajal-Carmona L,et al. A genomewide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3[J]. Nat Genet, 2008, 40(5): 623-630.
[13] Houlston RS, Cheadle J, Dobbins SE,et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33[J]. Nat Genet, 2010, 42(11): 973-977.
[14] Dunlop MG, Dobbins SE, Farrington SM,et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk[J]. Nat Genet, 2012, 44(7): 770-776.
[15] Jia WH, Zhang B, Matsuo K,et al. Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer[J]. Nat Genet, 2013, 45(2): 191-196.
[16] Kupfer SS, Anderson JR, Hooker S,et al. Genetic heterogeneity in colorectal cancer associations between African and European americans[J]. Gastroenterology, 2010, 139(5): 1677-1685, 1685 e1671-1678.
[17] Qin Q, Liu L, Zhong R,et al. The genetic variant on chromosome 10p14 is associated with risk of colorectal cancer: results from a case-control study and a meta-analysis[J]. PLoS One, 2013, 8(5): e64310.
[18] Wang H, Haiman CA, Burnett T,et al. Fine-mapping of genomewide association study-identified risk loci for colorectal cancer in African Americans[J]. Hum Mol Genet, 2013, 22(24): 5048-5055.
[19] Hong SN, Park C, Kim JI,et al. Colorectal cancer-susceptibility single-nucleotide polymorphisms in Korean population[J]. J Gastroenterol Hepatol, 2015, 30(5): 849-857.
[20] Zhang B, Jia WH, Matsuda K,et al. Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk[J]. Nat Genet, 2014, 46(6): 533-542.
[21] Sole X, Guino E, Valls J,et al. SNPStats: a web tool for the analysis of association studies[J]. Bioinformatics, 2006, 22(15): 1928-1929.
[22] Middeldorp A, Jagmohan-Changur S, van Eijk R,et al. Enrichment of low penetrance susceptibility loci in a Dutch familial colorectal cancer cohort[J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(11): 3062-3067.
[23] Li FX, Yang XX, Hu NY,et al. Single-nucleotide polymorphism associations for colorectal cancer in southern chinese population[J]. Chin J Cancer Res, 2012, 24(1): 29-35.
[24] Talseth-Palmer BA, Brenne IS, Ashton KA,et al. Colorectal cancer susceptibility loci on chromosome 8q23.3 and 11q23.1 as modifiers for disease expression in Lynch syndrome[J]. J Med Genet, 2011, 48(4): 279-284.
[25] Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature, 2012, 487(7407): 330-337.
[26] Feng K, Lu HJ, Jia HY,et al. Association between the single nucleotide polymorphism of RASSF1A Ala133Ser and colorectal cancer in north Chinese Han population[J]. Med J Chin PLA, 2015, 40(3): 221-225. [馮凱, 路浩軍, 賈海英, 等. RASSF1A A la133Ser單核苷酸多態性與中國北方漢族結直腸癌的關聯研究[J]. 解放軍醫學雜志, 2015, 40(3): 221-225.]
[27] Loo LW, Cheng I, Tiirikainen M,et al. cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue[J]. PLoS One, 2012, 7(2): e30477.
[28] Roux BT and Lindsay MA. LincRNA signatures in human lymphocytes [J]. Nat Immunol, 2015, 16(3): 220-222.
[29] Ma W, Ay F, Lee C,et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes[J]. Nat Methods, 2015, 12(1): 71-78.
Relationship of the polymorphism of rs10795668 single nucleotide and the susceptibility of colorectal cancer in north China Han population
FENG Kai1, LU Hao-jun1, JIA Hai-ying2, ZHENG Yan-hua1, ZHANG Jun1, JING Qing-ping3, WU Ji-hua3*1Center for Special Medicine and Experimental Research,2Center for Medical Examination,3Department of Pathology, 306 Hospital of PLA, Beijing 100101, China
*< class="emphasis_italic">Corresponding author, E-mail: jh_02821@126.com
, E-mail: jh_02821@126.com
This work was supported by the Medical Research Grant of 306 Hospital of PLA (13QN01;13ZD11)
ObjectiveTo evaluate the relationship between the rs10795668 single nucleotide polymorphism (SNP) and the colorectal cancer (CRC) in north China Han population.MethodsThe genotype of rs10795668 SNP was detected by PCRRFLP analysis in 113 colon cancer patients, 69 rectal cancer patients, and 192 age and sex matched controls. Unconditional logistic regression were used to comparatively analyze the genotype between patients and the controls adjusted by age and sex.ResultsNo significant difference of rs10795668 SNP was detected between colorectal cancer patients and normal controls, but it was found that an existence of interaction of gene and sex in colorectal cancer, and women with AA+AG genotype may have lower risk of colon cancer (OR3.05, 95% CI 1.47-6.35;P=0.00078).ConclusionThe AA+AG genotype of rs10795668 SNP is associated with the genetic susceptibility of colon cancer, but not of rectal cancer, in north China Han women.
colorectal cancer; genetic susceptibility; single nucleotide polymorphism
R735.34
A
0577-7402(2015)10-0821-05
10.11855/j.issn.0577-7402.2015.10.10
2015-06-01;
2015-08-29)
(責任編輯:沈寧)
解放軍306醫院院級課題(13QN01;13ZD11)
馮凱,醫學博士,副主任醫師,副教授。主要從事重大疾病遺傳易感性方面的研究
100101 北京 解放軍第306醫院特種醫學實驗研究中心(馮凱、路浩軍、鄭燕華、張軍),體檢中心(賈海英),病理科(景青萍、吳繼華)
吳繼華,E-mail:jh_02821@126.com