吳建良
頻數和頻率在中考的考查主要是條形統計圖和統計表的讀取和理解,用到的知識點是頻率、頻數、用樣本估計總體,關鍵是掌握頻率、頻數、總數之間的關系.雖然這種題目千變萬化,因題而異,但內在的聯系其實是一致的。現舉一個例子說明其中的內在聯系,請同學們細細體會。
例 為弘揚中華傳統文化,某校組織八年級1000名學生參加漢字聽寫大賽,為了解學生整體聽寫能力,從中抽取部分學生的成績(得分取正整數,滿分為100分)進行統計分析,請根據尚未完成的下列圖表,解答問題:
(1)本次抽樣調查的樣本容量是多少?表中m、n各是多少?
(2)補全頻數分布直方圖;
(3)若成績超過80分為優秀,則該校八年級學生中漢字聽寫能力優秀的約有多少人?
【分析】解決這一類題目主要先是條形統計圖和統計表的讀取和理解,而后最主要的是理解好頻數和頻率的兩個內在關系:關系①每一小組的頻數、頻率和抽查總數之間的關系:
頻數=頻率×抽查總數,因此三個數據中已知兩個就可以求出其中一個;關系②所有小組的頻率和是1,所以小組的頻數和是抽查總數;
(本題利用上述任何一個關系都可以求m、n,因此求m、n都有兩種主要的思路:求n的思路一是利用關系②可知所有小組的頻率和是1,n=1-0.08-0.15-0.25-0.40=0.12,思路二是利用關系①可知 ,利用前三小組的任意一小組的數據都可以求出16÷0.08=200(這里利用第一小組),而后利用頻數=頻率×抽查總數可求出m=200×0.40=80,最后利用 可以求出n= =0.12, 求m也同樣有兩種思路這里不具體給出,請同學們要掌握好這兩種關系并體會這兩種思路:求頻率和頻數如果要用關系①,那就要想辦法求出另外兩個量;如果要用關系②那么就要求出其他所以組的頻率、頻數和抽查總數)。當然具體做題時希望同學們能靈活運用。