白東峰 王毅 盧宏炎



摘要: 非局域非線性介質中的薛定諤方程很難用傳統的方法得出精確解析解,利用變分法系統研究了強非局域非線性介質中厄米高斯光束的傳輸問題。通過對非線性介質中響應函數的展開,使得非線性薛定諤方程得以簡化,求解出高階高斯光束孤子解。利用數值模擬研究了厄米高斯光束在介質中傳輸時束寬不變的問題,結果顯示當非局域程度非常大時,解析解非常接近數值解。
關鍵詞: 非局域非線性介質; 變分法; 孤子
中圖分類號: O 437 文獻標志碼: A doi: 10.3969/j.issn.1005-5630.2015.04.005
Abstract: It is difficult to use the conventional method to obtain accurate analytical solution of the Schrodinger equation in the nonlocal nonlinear media. The propagation of Hermite-Gaussian (HG) beams in the strongly nonlocal nonolinear media is discussed with a variational method in this paper. The nonlinear Schrodinger equation can be simplified through expanding the response function in the nonlinear medium. The solution of high-order Gaussian beam soliton is obtained. The beam width of HG beam is unchanged when it propagates in the media by using numerical simulations. The results show that the analytical solution is closer to the numerical solution when the degree of the nonlocality is very large.
Keywords: nonlocal nonlinear media; variational approach; solitons
引 言
空間光孤子是指在介質里面傳輸時其束寬不變的光束,近年來由于其獨特的傳輸特性在世界范圍內引起了極大的關注[1-16]。Snyder和 Mitchell的研究引起了廣泛的關注[1]。 Guo等研究了非局域非線性薛定諤方程揭示了高斯孤子的大相移[7]。Huang等利用變分法研究了亞強非局域介質中的光束傳輸問題[8]。Hu等討論了向列相液晶中非局域孤子的相互作用[9]。Deng等也得到了拉蓋爾高斯光束的討論并且獲得了精確解析解[11]。Bai等利用變分法討論了非局域非線性介質中的高斯光束的傳輸問題[12]。
本文利用變分法解析出了(1+2)維非局域非線性薛定諤方程的解,并給出了數值模擬。討論了厄米高斯光束在非局域非線性介質里面的傳輸特性,得到了厄米高斯光束解析解。數值模擬顯示厄米高斯光束能夠傳輸一段較長的距離而束寬保持不變,隨著非局域程度的增大,解析解愈加接近數值解。
3 結 論
用解析的方法研究了非局域非線性介質中光束的傳輸特性,通過對非線性介質中響應函數的展開,使得非線性薛定諤方程得以簡化,得到光束各參量在傳輸過程中的演化規律,求解出高階高斯光束孤子解。通過解析解與數值模擬比較,發現隨著非局域程度的增加,解析解更加接近數值解。
參考文獻:
[1] SNYDER A W,MITCHELL D J.Accessible solitons[J].Science,1997,276(6):1538-1541.
[2] CONTI C,PECCIANTI M,ASSANTO G.Route to nonlocality and observation of accessible solitons[J].Physical Review Letters,2003,91(7):073901-1-4.
[3] CONTI C,PECCIANTI M,ASSANTO G.Observation of optical spatial solitons in a highly nonlocal medium[J].Physical Review Letters,2004,92(11):113902-1-4.
[4] ROTSCHILD C,COHEN O,MANELA O,et al.Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons[J].Physical Review Letters2005,95(21):213904-1-4.
[5] PECCIANTI M,CONTI C,ASSANTO G.All-optical switching and logic gating with spatial solitons in liquid crystals[J].Applied Physics Letters,2002,81(18):3335-3337.
[6] PECCIANTI M,BRZDAKIEWICZ K A,ASSANTO G.Nonlocal spatial soliton interactions in nematic liquid crystals[J].Optics Letters,2002,27(16):1460-1462.
[7] GUO Q,LUO B R,YI F H, et al.Large phase shift of nonlocal optical solitons[J].Physical Review,2004,69(1):016602-1-8.
[8] HUANG Y,GUO Q,CAO J N.Optical beams in lossy nonlocal Kerr media[J].Optics Communications,2006,261(1):175-180.
[9] HU W,ZHANG T,GUO Q,et al.Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals[J].Applied Physics Letters,2006,89(7):071111-1-3.
[10] BUCCOLIERO D,DESYATNIKOV A S,KROLIKOWSKI W,et al.Laguerre and Hermite soliton clusters in nonlocal nonlinear media[J].Physical Review Letters,2007,98(5):053901-1-4.
[11] DENG D M,ZHAO X,GUO Q, et al.Hermite-Gaussian breathers and solitons in strongly nonlocal nonlinear media[J].Journal of the Optical Society of America B,2007,24(9):2537-2544.
[12] BAI D F,HUANG C C,HE J F, et al.Variational solutions for Hermite-Gaussian solitons in nonlocal nonlinear media[J].Chinese Physics B,2009,18(7):2853-2857.
[13] OUYANG S G,GUO Q,LAN S, et al.The solutions of the strongly nonlocal spatial solitons with several types of nonlocal response functions[J].Chinese Physics, 2007,16(8):2325-2330.
[14] OUYANG S G,GUO Q,WU L, et al.Conservation laws of the generalized nonlocal nonlinear Schrodinger equation[J].Chinese Physics,2007,16(8):2331-2337.
[15] BAI Z Y,DENG D M,GUO Q.Elegant Ince-Gaussian beams in a quadratic-index medium[J].Chinese Physics B,2011,20(9):094202.
[16] BAI Z Y,DENG D M,GUO Q.Elegant Ince-Gaussian breathers in strongly nonlocal nonlinear media[J].Chinese Physics B,2012,21(6):064218.
(編輯:程愛婕)