占龍俊,黃心中
(華僑大學數學科學學院,福建泉州362021)
調和映照與像域為線性連結的剪切函數的關系
占龍俊,黃心中
(華僑大學數學科學學院,福建泉州362021)

調和映照;線性連結;調和擬共形映照;α近于凸.

Huang[3]對Chuaqui等[2]所得的結論進一步推廣,得到不少有趣的成果.Huang[3]還特別指出,在一定條件下,f(D)的線性連結性與f(z)的擬共形性,及h(D)線性連結性與h(z)的單葉性是一對不變量.文獻[6-8]分別對單葉調和映照的性質及穩定性問題進行研究.

Chen等[10]證明了定理C[2].


證明 假設F(z)=h(z)-g(z),若h(z)在D上不單葉,則存在z1,z2∈D,且z1≠z2,使得h(z1)=h(z2).由h(z)=F(z)+g(z),則F(z2)-F(z1)=g(z1)-g(z2).根據F(z)的單葉性,令w=F(z)有w2-w1=g(F-1(w1))-g(F-1(w2)).由于F(D)是M-線性連結區域.則存在連結w1-w2∈F(D)的可求長曲線γ∈F(D)滿足l(γ)≤M|w1-w2|,即

這與w2-w1=g(F-1(w1))-g(F-1(w2))矛盾,從而說明h(z)在D上單葉.
令ξ=h(F-1(w))=w+g(F-1(w)),任意ξ1,ξ2∈h(D),存在w1,w2∈F(D),使ξ1=h(F-1(w1)),ξ2=h(F-1(w2)).由于F(D)是M-線性的連結區域,則存在γ為連結w1,w2的曲線,使l(γ)≤M|w1-w2|.取Γ=h(F-1(γ)),有


又



又

相應于定理C的結果,進一步研究其參數化的情況,得到定理2.
證明 因F(z)為D上α近于凸映照,由文獻[6]得F(z)在D上的單葉,且F(D)是1/cos(απ/2)-線性連結區域,則由定理C可得h(z)在D上的單葉.
令ξ=h(F-1(w))=w+g(F-1(w)),任意ξ1,ξ2∈h(D),存在w1,w2∈F(D),使ξ1=h(F-1(w1)),ξ2=h(F-1(w2)).由于F(D)是1/cos(απ/2)-線性連結區域,則存在γ為連結w1,w2的曲線,使l(γ)≤1/cos(απ/2|w1-w2|).取Γ=h(F-1(γ)),有

又



又

注1 注意到當|λ|<1時,這時t可以取到小于2的常數.



又


對于fλ(z)=h(z)+λg(z)時,采用相同的證明方法,可得到定理3中的結論.定理3證畢.
在定理1,2,3中,若F(z)=h(z)+g(z)有相應的假定,結論仍是成立的.
[1] LEWY H.On the non-vanishing of the jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-698.
[2] CHUAQUI M,HERNANDEZ R.Univalent harmonic mappings and linearly connected domains[J].J Math Anal Appl,2007,33(2):1189-1194.
[3] HUANG Xin-zhong.Locally univalent harmonic mappings with linearly connected image domains[J].Chinese Ann Math Ser A(Chinese),2010,31A(5):625-630.
[4] 王其文,黃心中.某些調和函數的系數估計與像區域的近于凸性質[J].華僑大學學報:自然科學版,2013,34(2):225-229.
[5] 石擎天,黃心中.調和映照與其剪切函數的單葉性[J].華僑大學學報:自然科學版,2013,34(3):334-338.
[7] HUANG Xin-zhong.Harmonic quasiconformal mappings on the upper half-plane[J].Complex Variables and Elliptic Equations,2013,58(7):1005-1011.
[8] 夏小青,黃心中.一類雙調和映照的單葉半徑估計[J].華僑大學學報:自然科學版,2011,32(2):218-221.
[9] POMMERENKE C.Boundary behaviour of conformal maps[M].Berlin:Springer-Verlag,1992:106-107.
[10] CHEN Shao-lin,PONNUASMY S,RASILA A,et al.Linear connectivity,Schwarz-Pick lemma and univalency criteria for planar harmonic mappings[EB/OL].[2015-01-05].http://arxiv.org/abs/1404.4155.
Relation Between Harmonic Mapping and Its Shear Function With Linearly Connected Image Domain
ZHAN Long-jun,HUANG Xin-zhong
(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)

harmonic mapping;linearly connected domain;harmonic quasiconformal mapping;α-close-to convex
陳志賢 英文審校:黃心中)
O174.51;O174.55文獻標志碼: A
1000-5013(2015)05-0603-06 doi:10.11830/ISSN.1000-5013.2015.05.0603
2015-01-05
黃心中(1957-),男,教授,博士,主要從事函數論的研究.E-mail:huangxz@hqu.edu.cn.
國家自然科學基金資助項目(11471128);福建省自然科學基金資助項目(2014J01013)