李超
摘要:本文針對隧道工程中易出現襯砌厚度不夠、襯砌與圍巖間存在脫空區、塌方回填不實以致影響隧道穩定性的問題,探討了基于地質雷達技術的檢測方法,論文首先探討了地質雷達檢測的基本原理,進而詳細分析了數據采集和數據處理、資料解譯的具體實施策略,相信對從事相關工作的同行能有所裨益。
關鍵詞:隧道工程檢測地質雷達
中圖分類號:U456 文獻標識碼:A 文章編號:1672-3791(2015)07(b)-0000-00
我國是一個地域遼闊,多山的國家,交通運輸發展很快,新修建的公路為縮短建設里程、改善線路走向及保護環境將大量修建隧道,以改變那種逢山繞著走、坡陡、曲線半徑小的現象。隧道工程既能保證行車安全又可防止滑坡、泥石流及提高行車速度和安全的可靠性,還能與周圍環境協調,保證自然景觀的完善。修建隧道作為公路施工中的重點環節,加強質量檢測具有重要的意義,但由于隧道支護質量較難檢測,易給通車后的營運和安全遺留下隱患。隧道常見的問題有襯砌厚度不夠、襯砌與圍巖間存在脫空區、塌方回填不實等。由于以上問題的存在,降低了襯砌的承壓力,嚴重影響隧道的穩定,甚至可造成拱部坍塌。如果對以上問題能及時發現,采取適當的加固措施,可將施工中存在的質量隱患排除在正常營運之前,確保以后隧道的正常使用。地質雷達檢測是近年來應用于淺層探測的一項新技術,其特點是快速、無損、連續檢測,并以實時成像的方式顯示探測結果,分析、解釋直觀方便。加上其探測精度高、樣點密、工作效率高等優勢而倍受青睞。使用地質雷達對隧道襯砌結構進行檢測是物探領域發展較為迅速、效果較為顯著的方法之一。
1 地質雷達檢測的基本原理
地質雷達設備由兩個主要部分組成,即控制主機和天線。主機提供控制信號,由天線發射、接收超高頻電磁波。電磁波從天線發出,在襯砌和圍巖內傳播,遇到襯砌邊界、內部裂縫、空洞和圍巖及圍巖內界面等都會發生反射,這些反射的電磁波又傳回天線,天線接收到這些反射信號,把它傳到主機,主機對這些反射信號進行全時程數字化記錄,存儲并顯示出來。反射界面距離越遠,反射信號往返所需時間越長;反射界面越平整、面積越大和兩側的物性差異越大,反射的信號越強。通過記錄到的反射波的走時和強度數據,可以判定反射界面的位置和兩側介質的性質,從中得到襯砌厚度、劈裂、空洞的位置和形態、圍巖結構狀態等參數,達到高分辨無損檢測的目的。
從該方法的原理中可以看出,要從反射信號的走時換算到空間位置,需要了解混凝土和圍巖介質的電磁波速度,它影響到測量深度的換算精度。空氣中電磁波速是0.3 m/ns,一般干燥巖石為0.11 m/ns左右,水是自然界中電磁波速最低的物質,為空氣的1/9,約為0.033 m/ns,在混凝土中的電磁波波速為0.12 m/ns。其反射和工作原理示意圖如圖1所示。
圖1 電磁波遇到地下物體后的反射示意圖
理論研究與試件的模擬試驗證明,雷達電磁波在物體或介質中的傳播速度隨介質的相對介電常數的增加而降低。介質的介電常數不僅與介質本身的性質有關,而且還與介質中的含水率有關,如果襯砌孔隙較多,又充有水,那么波速會顯著降低。物性的差異反映到波速的不同,同時也影響到反射信號強度的不同。在野外工作條件下,巖石、土和混凝土等工程介質之間都有物性差異,之間的界面都能形成反射,它們的介電常數差異不大,界面反射信號雖不太強,但地質雷達有足夠高的靈敏度將它們辨別出來。巖石、土、混凝土等工程介質與水、空氣、金屬之間的電磁性質的差異極大,界面反射信號很強,極易識別。在隧道襯砌檢測中金屬構件、飽水帶、空洞乃至劈裂空隙反映更加明顯。
2 數據的采集
當使用地質雷達進行檢測時,發射和接收天線與隧道襯砌表面密貼,沿測線滑動,由雷達儀主機高發射雷達脈沖,進行快速連續采集。雷達每秒發射64個脈沖,每米測線約有測點40個~60個。雷達時間剖面上各測點的位置和隧道里程相聯系。為保證點位的準確,在隧道壁上每5 m做一標志,標上里程。當天線對齊某一標記時,由儀器操作員向儀器輸入信號,在雷達記錄中每5 m做一小標記,50 m或100 m的整數樁號打一個大標記。內業整理資料時,根據標記和記錄的首、末標及工作中間核查的里程,在雷達的時間剖面圖上標明里程樁號。選擇900 MHz和500 MHz天線,其他參數為:1)采集方式:連續測量;2)掃描點數:512;3)增益方式:自動;4)900 MHz天線的時間窗(記錄長度)為15 ns,500 MHz天線的時間窗為50 ns。
3 數據的處理與資料解釋
雷達探測透視掃描的所有記錄數據,在現場回放并轉儲在計算機硬盤上,室內工作使用電腦進行分析處理。數據與資料的處理基本可分為兩個階段:
(1)將記錄數據圖像回放顯示,通過分析,確認標志層與異常,確定突出異常的相關處理參數和使用程序;
(2)用雷達專用軟件進行正式處理。探地雷達所接收的是來自地下不同電性界面的反射波,電性界面包括了地質層界面和有限目的體的界面。探地雷達透視掃描提供的二維彩色圖像,由16種色彩組成,不同色彩反映的是電磁波反射強弱的變化,即反映了不同介質的電性差異。探地雷達掃描圖像的正確解釋是建立在探測參數選置合適,數據處理得當,有足夠的模擬試驗對比以及閱圖經驗豐富等基礎之上。依據雷達圖像中的相位、頻率、幅值及形態等特征的不同,對雷達剖面逐一進行了分析判別;并將不同地段的時間剖面和已知資料及鉆孔資料相對比,找出了不同界面及不同地質現象的反射波形特征,對混凝土厚度、襯砌周圍松散帶、圍巖松動帶和基巖裂隙帶等進行了解釋。
4結語
地質雷達在隧道襯砌檢測過程中,能有效地探測到襯砌厚度、脫空區范圍、襯砌開裂、襯砌外圍擊巖富水等數據,對施工方采取加固措施消除隱患提供科學準確的依據,將隱患排除在隧道投入使用之前,對隧道的安全使用和正常營運起到了重要作用。隨著地質雷達檢測技術的不斷完善和發展,地質雷達檢測技術必將成為隧道施工質量安全保證的必不可少的重要環節。
參考文獻
[1] 李大心.探底雷達方法與應用[M].北京:北京地質出版社,1994.
[2] 郭有勁.地質雷達在隧道襯砌質量檢測中的應用效果[J].地質裝備,2012.
[3]魏超,肖國強,王法剛.地質雷達在混凝土質量檢測中的應用研究[J].工程地球物理學報,2014.
[4] 夏才初,潘國榮.土木工程監測技術[M].北京:中國建筑工業出版社,2001.
[5] 曾昭發,劉四新,王者江.探底雷達方法原理及應用[M].北京:科學出版社,2006.