999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

旋翼翼型動(dòng)態(tài)失速模型參數(shù)識(shí)別及應(yīng)用

2015-11-11 17:22:24胡國才雷衛(wèi)東海軍航空工程學(xué)院飛行器工程系山東煙臺(tái)264001

柳 泉,胡國才,雷衛(wèi)東(海軍航空工程學(xué)院飛行器工程系,山東煙臺(tái)264001)

?

旋翼翼型動(dòng)態(tài)失速模型參數(shù)識(shí)別及應(yīng)用

柳泉,胡國才,雷衛(wèi)東
(海軍航空工程學(xué)院飛行器工程系,山東煙臺(tái)264001)

摘要:為了拓展Leishman-Beddoes(L-B)動(dòng)態(tài)失速模型的應(yīng)用范圍,以適應(yīng)特定翼型的動(dòng)態(tài)失速分析,在詳細(xì)分析L-B動(dòng)態(tài)失速模型特點(diǎn)的基礎(chǔ)上,提出一種模型參數(shù)的識(shí)別方法。以SC-1095翼型為例,采用其靜態(tài)升阻特性數(shù)據(jù),對(duì)L-B動(dòng)態(tài)失速模型中的參數(shù)進(jìn)行了識(shí)別,并據(jù)此對(duì)該翼型的動(dòng)態(tài)失速升阻特性進(jìn)行了數(shù)值計(jì)算,計(jì)算結(jié)果與試驗(yàn)值吻合良好。

關(guān)鍵詞:旋翼;翼型;動(dòng)態(tài)失速;參數(shù)識(shí)別

動(dòng)態(tài)失速是指在直升機(jī)旋翼旋轉(zhuǎn)過程中,旋翼剖面翼型迎角呈現(xiàn)非定常變化,當(dāng)迎角超過臨界值時(shí),翼型升力系數(shù)并不與靜態(tài)失速模型描述的一樣直接發(fā)生失速,而是產(chǎn)生失速延遲的現(xiàn)象。這一現(xiàn)象多發(fā)生于直升機(jī)大速度前飛和高槳盤載荷情況下,對(duì)直升機(jī)的飛行性能和旋翼載荷具有較大的影響[1]。因此,建立準(zhǔn)確的動(dòng)態(tài)失速模型對(duì)于直升機(jī)平衡特性計(jì)算及旋翼載荷計(jì)算等方面具有重要意義。

雖然目前用CFD方法可以模擬翼型的動(dòng)態(tài)失速特性[2],但是該方法計(jì)算量大并且將其計(jì)算結(jié)果用于直升機(jī)氣動(dòng)載荷計(jì)算還有很大的困難。而Leishman-Beddoes半經(jīng)驗(yàn)動(dòng)態(tài)失速模型因其方法簡單直觀,涉及的經(jīng)驗(yàn)參數(shù)少,適于時(shí)域求解,被廣泛應(yīng)用于直升機(jī)旋翼的氣動(dòng)載荷計(jì)算[3]。該模型最初由Beddoes[4-5]在20世紀(jì)70年代中期發(fā)展起來,隨后,Leishman[6-7]對(duì)其進(jìn)行了拓展,使其完整地模擬翼型動(dòng)態(tài)失速過程。文獻(xiàn)[7]對(duì)需識(shí)別的參數(shù)及方法進(jìn)行了簡單介紹。

文獻(xiàn)[8-10]只是針對(duì)給定翼型數(shù)據(jù)進(jìn)行了動(dòng)態(tài)失速過程仿真,并沒有開展相關(guān)參數(shù)識(shí)別工作。

本文對(duì)SC-1095翼型的L-B動(dòng)態(tài)失速模型中所需要的參數(shù)進(jìn)行識(shí)別,為某型直升機(jī)的氣動(dòng)特性計(jì)算打下基礎(chǔ)。

1 L-B動(dòng)態(tài)失速模型

1.1附著流

1.1.1法向力系數(shù)

環(huán)量法向力系數(shù)的遞推公式為:式(1)中:CNα為法向力系數(shù)隨迎角變化曲線斜率,可通過翼型靜態(tài)失速試驗(yàn)得到;αn為迎角;αEn為有效迎角;n、n分別為缺損函數(shù),式(2)、(3)中:A1、A2、B1、B2為給定經(jīng)驗(yàn)參數(shù),A1=0.3、A2=0.7、B1=0.14、B2=0.53;為Prandtl-Glauert壓縮性修正因子,Ma為馬赫數(shù);Δαn為樣本時(shí)間間隔Δt=tn-tn-1內(nèi)的迎角變化量;ΔS為樣本時(shí)間間隔內(nèi)的時(shí)間參數(shù)變量,式(4)中:V為翼型剖面速度;c為翼型弦長。非環(huán)量法向力系數(shù)的遞推公式為式(5)中:T=c,a為音速;

Ia為缺損函數(shù),

迎角變化率引起的法向力系數(shù)的遞推公式為:式(8)中:Δq為迎角變距率,;Δ為樣本

n時(shí)間間隔內(nèi)迎角變化率的變化量;Dqn為缺損函數(shù),

附著流情況下總的法向力系數(shù)為

1.1.2俯仰力矩系數(shù)

非環(huán)量法向力系數(shù)引起的1/4弦線處俯仰力矩系數(shù)為

迎角變化率引起的1/4弦線處俯仰力矩系數(shù)為

式(13)中:

DqMn為缺損函數(shù),

附著流情況下總的俯仰力矩系數(shù)為

1.1.3弦向力系數(shù)

附著流情況下的弦向力系數(shù)為

1.2前緣分離

翼型出現(xiàn)氣流前緣分離的條件是動(dòng)態(tài)失速模型的關(guān)鍵。氣流發(fā)生前緣分離與前緣壓力密切相關(guān),而前緣壓力又與法向力系數(shù)CN有關(guān),所以將法向力系數(shù)是否大于氣流前緣分離的臨界法向力系數(shù)CN1作為氣流前緣分離的判斷依據(jù),CN1可通過翼型靜態(tài)失速試驗(yàn)得到。

非定常情況下,法向力系數(shù)CN的變化滯后于迎角的變化,而前緣壓力的變化又滯后于法向力系數(shù)的變化,所以須對(duì)法向力系數(shù)進(jìn)行一階滯后補(bǔ)償處理,引入一個(gè)法向力系數(shù)替代值C′N,用于表征前緣壓力的變化,式(17)中為缺損函數(shù),式(18)中,Tp為與馬赫數(shù)有關(guān)的經(jīng)驗(yàn)參數(shù)。

于是,C′N>CN1為非定常情況下氣流發(fā)生前緣分離的條件。

1.3后緣分離

準(zhǔn)定常情況下,由Kirchhoff理論可得后緣分離時(shí)翼型的法向力系數(shù)為式中,f為后緣分離點(diǎn),通過翼型靜態(tài)失速試驗(yàn)可得其與迎角的關(guān)系為式(20)中:α0.7為f=0.7時(shí)的迎角,通過試驗(yàn)發(fā)現(xiàn)[11]大部分翼型靜態(tài)失速臨界迎角處f≈0.7;S1、S2可通過翼型靜態(tài)失速試驗(yàn)得到。

俯仰力矩系數(shù)經(jīng)驗(yàn)公式為式(21)中:K0、K1、K2為與馬赫數(shù)有關(guān)的經(jīng)驗(yàn)參數(shù);經(jīng)驗(yàn)參數(shù)m=2。

弦向力系數(shù)為式中,η為修正因子,η=0.95。

非定常情況下,由于翼型壓力分布和附面層響應(yīng)與分離點(diǎn)之間存在相位差,需對(duì)分離點(diǎn)位置進(jìn)行修正。

定義修正迎角:

該迎角用于確定修正的分離點(diǎn)f′,考慮到附面層響應(yīng)的滯后影響,對(duì)其進(jìn)行一階滯后補(bǔ)償處理,最終的后緣分離點(diǎn)為:式中,為缺損函數(shù),式(25)中,Tf為與馬赫數(shù)有關(guān)的經(jīng)驗(yàn)參數(shù)。

后緣分離情況下,非定常法向力系數(shù)、俯仰力矩系數(shù)和弦向力系數(shù)分別為:

1.4動(dòng)態(tài)失速

動(dòng)態(tài)失速的整個(gè)發(fā)展過程可描述為:

1)當(dāng)C′N>CN1時(shí),前緣氣流發(fā)生分離,此時(shí)計(jì)無量綱時(shí)間τv=0;

2)前緣渦脫離翼型上表面形成脫體渦向翼型后緣傳播,在此過程中,τ以無量綱時(shí)間步長開始

v累加,當(dāng)τv=Tvl時(shí),脫體渦到達(dá)翼型后緣,Tvl為與馬赫數(shù)有關(guān)的經(jīng)驗(yàn)參數(shù);

3)脫體渦離開后緣一個(gè)弦長,τv繼續(xù)累加,當(dāng)τv=2Tvl時(shí),視為整個(gè)過程結(jié)束。

在τv=0~Tvl過程中,渦誘導(dǎo)升力的變量等于非定常環(huán)量升力與Kirchhoff理論近似得到的非定常升力之差,即

積累的渦誘導(dǎo)升力的遞推公式為:式中,Tv為與馬赫數(shù)有關(guān)的經(jīng)驗(yàn)參數(shù)。

在τv=Tvl~2Tvl過程中,Cvn=0。

因此,總的法向力系數(shù)為

翼型上的壓力中心隨渦的運(yùn)動(dòng)而改變,其表達(dá)式為

由于壓力中心變化引起的翼型俯仰力矩系數(shù)的變量為因此,總的俯仰力矩系數(shù)為在動(dòng)態(tài)失速過程中,即C′N>CN1時(shí),弦向力系數(shù)為式中,Df為與馬赫數(shù)有關(guān)的經(jīng)驗(yàn)參數(shù)。

由翼型法向力系數(shù)與弦向力系數(shù)可得翼型總的升阻系數(shù)分別為:

2 參數(shù)識(shí)別

通過對(duì)L-B動(dòng)態(tài)失速模型的分析研究,可知需通過翼型靜態(tài)失速升阻曲線識(shí)別的參數(shù)為:CNα

、CN1

、

α0.7、S1、S2。

本文所采用的靜態(tài)升阻曲線取自參考文獻(xiàn)[12],以Ma=0.3時(shí)為例,升阻曲線如圖1、2所示。

由翼型法向力系數(shù)與升阻系數(shù)的關(guān)系可得:

圖1 升力系數(shù)隨迎角變化曲線Fig.1 Lift coefficient vs angle of attack

圖2 阻力系數(shù)隨迎角變化曲線Fig.2 Drag coefficient vs angle of attack

翼型法向力系數(shù)與迎角關(guān)系曲線如圖3所示。由圖3可得:CNα

=0.107、CN1

=1.228 1、α0.7=12°。

圖3 法向力系數(shù)隨迎角變化曲線Fig.3 Normal force coefficient vs angle of attack

由式(19)可求得α<α0.7、α>α0.7時(shí)所對(duì)應(yīng)的分離點(diǎn)f1、f2,再將所得分離點(diǎn)及對(duì)應(yīng)迎角分別代入式(20)求得S1、S2。

至此,所需參數(shù)識(shí)別完畢。

3 模型驗(yàn)證

為驗(yàn)證模型及所識(shí)別參數(shù)的正確性,采用以下算例進(jìn)行驗(yàn)證計(jì)算,模型中所有給定經(jīng)驗(yàn)參數(shù)及試驗(yàn)值取自文獻(xiàn)[6],給定經(jīng)驗(yàn)參數(shù)如表1所示。

算例:翼型SC1095,c=0.1,Ma=0.3,

從圖4~6可以看出:通過本文所建模型及所識(shí)別的參數(shù)進(jìn)行計(jì)算得到的升力系數(shù)、阻力系數(shù)和俯仰力矩系數(shù)與文獻(xiàn)值吻合較好,驗(yàn)證了本文模型及參數(shù)識(shí)別方法的正確性。從圖4可以看出:動(dòng)態(tài)失速模型計(jì)算得到的升力系數(shù)與靜態(tài)失速試驗(yàn)值相比,產(chǎn)生了失速延遲。

表1 經(jīng)驗(yàn)參數(shù)Tab.1 Eperiential coefficients

表1 經(jīng)驗(yàn)參數(shù)Tab.1 Eperiential coefficients

參數(shù)K0K1 K2 Df Tp Tf TvTvIMa 0.3 0.0025 -0.135 0.04 8.0 1.7 3.0 6.0 7.0 0.4 0.006 -0.135 0.05 7.75 1.8 2.5 6.0 9.0 0.5 0.02 -0.125 0.04 6.2 2.0 2.2 6.0 9.0 0.6 0.038 -0.12 0.04 6.0 2.5 2.0 6.0 9.0 0.7 0.030 -0.09 0.15 5.9 3.0 2.0 6.0 9.0 0.75 0.001 -0.13 -0.02 5.5 3.3 2.0 6.0 9.0 0.8 -0.01 0.02 -0.01 4.0 4.3 2.0 4.0 9.0

圖4 升力系數(shù)隨迎角變化曲線Fig.4 Lift coefficient vs angle of attack

圖5 阻力系數(shù)隨迎角變化曲線Fig.5 Drag coefficient vs angle of attack

圖6 俯仰力矩系數(shù)隨迎角變化曲線Fig.6 Pitching moment coefficient vs angle of attack

4 結(jié)論

根據(jù)SC1095翼型的靜態(tài)失速升阻曲線,對(duì)L-B動(dòng)態(tài)失速模型中所需參數(shù)進(jìn)行了識(shí)別,并利用識(shí)別參數(shù)對(duì)該翼型的動(dòng)態(tài)失速升阻特性進(jìn)行了數(shù)值計(jì)算,計(jì)算結(jié)果與試驗(yàn)值吻合良好。

參考文獻(xiàn):

[1]陳文軒. CFD法中的動(dòng)態(tài)失速模擬[J].直升機(jī)技術(shù),2008(3):55-68. CHEN WENUAN. Dnamic stall predictions bCFD method[J]. Helicopter Technique,2008(3):55- 68.(in Chinese)

[2]LEISHMAN J G. Principles of helicopter aerodnamics [M]. 2nd ed. Cambridge UniversitPress,2007:525-526.

[3]王浩文,高正.采用綜合氣彈分析方法的旋翼非定常氣動(dòng)載荷計(jì)算[J].南京航空航天大學(xué)學(xué)報(bào),2003,35(3):268-272. WANG HAOWEN,GAO ZHENG. Unsteadrotor airload prediction using a comprehensive areoelastic analsis [J]. Journal of Nanjing Universitof Aeronautics &Astronautics,2003,35(3):268-272.(in Chinese)

[4]BEDDOES T S. A snthesis of unsteadaerodnamic effects including stall hsteresis[J]. Vertica,1976,1(2):113-123.

[5]BEDDOES T S. Representation of airfoil behavior[J]. Vertica,1983,7(2):183-197.

[6]LEISHMAN J G,BEDDOES T S. A generalized model for unsteadaerodnamic behavior and dnamic stall using indicial method[C]//42nd Annual Forum of the American Helicopter Societ. Washington D.C.,1986:243-264.

[7]LEISHMAN J G,BEDDOES T S. A semi-empirical model for dnamic stall[C]//42th Annual Forum of the American Helicopter Societ. Washington D.C.,1986:3-17.

[8]宋辰瑤,徐國華.旋翼翼型非定常動(dòng)態(tài)失速響應(yīng)的計(jì)算[J].空氣動(dòng)力學(xué)學(xué)報(bào),2007,25(4):461-467. SONG CHENAO,U GUOHUA. Computation of unsteaddnamic stall response on rotor airfoils[J]. Acta Aerodnamic Sinica,2007,25(4):461-467.(in Chinese)

[9]劉雄,張憲民,陳嚴(yán),等.基于Beddoes-leishman動(dòng)態(tài)失速模型的水平軸風(fēng)力機(jī)動(dòng)態(tài)氣動(dòng)載荷計(jì)算方法[J].太陽能學(xué)報(bào),2008,29(12):1449-1455. LIUIONG,ZHANGIANMIN,CHENAN,et al. Transient aerodnamic load prediction of horizontal ais wind turbine based on the Beddoes- leishman model[J]. Acta Energiae Solaris Sinica,2008,29(12):1449-1455. (in Chinese)

[10]劉錚.動(dòng)態(tài)失速對(duì)直升機(jī)空中共振的影響分析[D].南京:南京航空航天大學(xué),2013. LIU ZHENG. Investigation of the influence of dnamic stall on helicopter air resonance stabilit[D]. Nanjing:Nanjing Universitof Aeronautics and Astronautics,2013.(in Chinese)

[11]LEISHMAN J G,CROUSE G L. State-space model for unsteadairfoil behavior and dnamic stall[C]//30th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dnamics and Materials Conference. Mobile,1989:1372-1383.

[12]HOWLETT J J. UH-60A black hawk engineering simulation program,NASA-CR-166309[R]. Washington D.C.:NASA,1981:5.1-52-5.1-54.

Parameter Identification and Applicatioonn of Rotor Airfoil Dnamic Stall Model

LIU Quan, HU Guo-cai, LEI Wei-dong
(Department of Airborne Vehicle Engineering, NAAU,antai Shandong 264001, China)

Abstrraacctt:: On the basis of the characteristics of Leishman-Beddoes (L-B) dnamic stall model, the method of parameters identification was put forward in order to epand the application range of L-B dnamic stall model and adapt to dnamic stall analsis of specific airfoil. The dnamic stall lift and drag were calculated with the parameters identified from the stat?ic stall lift and drag curves of SC-1095, the results agreed well with the eperimental value.

作者簡介:柳泉(1986-),男,博士生;胡國才(1964-),男,教授,博士,博導(dǎo)。

基金項(xiàng)目:航空科學(xué)基金資助項(xiàng)目(20145784010)

收稿日期:2014-11-26;

DOI:10.7682/j.issn.1673-1522.2015.02.007

文章編號(hào):1673-1522(2015)02-0129-05

文獻(xiàn)標(biāo)志碼:A

中圖分類號(hào):V212.4

修回日期:2015-01-05

主站蜘蛛池模板: 久久亚洲AⅤ无码精品午夜麻豆| 婷婷色婷婷| 亚洲精品无码抽插日韩| 无码不卡的中文字幕视频| 囯产av无码片毛片一级| 久久精品中文无码资源站| 日韩在线永久免费播放| 国产极品粉嫩小泬免费看| 国产精品.com| 四虎亚洲精品| 扒开粉嫩的小缝隙喷白浆视频| 欧美国产日产一区二区| 亚洲人在线| 99人体免费视频| 国产jizz| 日韩美毛片| 99爱视频精品免视看| 人人妻人人澡人人爽欧美一区| 在线不卡免费视频| 欧美不卡在线视频| 女人18一级毛片免费观看| 91精品综合| 欧美综合一区二区三区| 国产日韩精品欧美一区灰| 在线观看精品国产入口| 2020最新国产精品视频| 亚洲欧美日韩中文字幕在线一区| 中文字幕人成乱码熟女免费| 青青国产在线| 国产一在线观看| 国产探花在线视频| 国产精品熟女亚洲AV麻豆| 国产18在线播放| 欧美激情第一区| 四虎亚洲国产成人久久精品| 女人爽到高潮免费视频大全| 国产午夜福利在线小视频| 久久99精品久久久久久不卡| 久爱午夜精品免费视频| 亚洲第一黄片大全| 欧美不卡二区| 国产在线八区| 97在线观看视频免费| 97在线碰| 国产v欧美v日韩v综合精品| 国产h视频免费观看| 国产欧美日本在线观看| 四虎国产永久在线观看| 国产精品午夜福利麻豆| 亚洲乱亚洲乱妇24p| 国产成人三级在线观看视频| 欧美精品aⅴ在线视频| 国产熟睡乱子伦视频网站| 中文字幕波多野不卡一区 | 欧美中文字幕无线码视频| 波多野结衣一区二区三视频 | 欧美一级色视频| 亚洲欧洲日韩综合| 午夜综合网| 六月婷婷激情综合| 高清不卡毛片| 91国内外精品自在线播放| 亚洲免费三区| 亚洲色欲色欲www在线观看| 婷婷中文在线| 狠狠做深爱婷婷综合一区| 国产成年无码AⅤ片在线| 国产理论最新国产精品视频| 国产精品久久久久无码网站| 日本尹人综合香蕉在线观看| 中文一区二区视频| 国产成人综合日韩精品无码首页| 国产精品一区二区在线播放| 在线观看91精品国产剧情免费| 亚洲精品在线观看91| 亚洲精品无码成人片在线观看| 欧美一级在线| 亚洲AV色香蕉一区二区| 日日摸夜夜爽无码| 国产精品流白浆在线观看| 成人国产免费| 亚洲第一中文字幕|