999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

牛乳蛋白合成調(diào)控研究進(jìn)展

2015-11-12 21:00:10周苗苗崔景香
湖北農(nóng)業(yè)科學(xué) 2015年20期

周苗苗+崔景香

摘要:乳蛋白的氨基酸(AA)含量和比例比較理想,是一種營(yíng)養(yǎng)價(jià)值很高的蛋白質(zhì)。除小部分來(lái)源于血液外,乳中絕大部分的蛋白質(zhì)由乳腺上皮細(xì)胞利用血液中的氨基酸或小肽從頭合成。乳中的蛋白質(zhì)含量和組成直接影響乳蛋白的營(yíng)養(yǎng)和生理特性以及乳制品的產(chǎn)量。只有清楚地了解乳蛋白合成的調(diào)控機(jī)制,才能更好地通過(guò)營(yíng)養(yǎng)策略來(lái)提高乳蛋白含量。因此,對(duì)奶牛乳腺細(xì)胞內(nèi)乳蛋白的合成調(diào)控進(jìn)行了簡(jiǎn)要綜述。

關(guān)鍵詞:乳蛋白;合成;調(diào)控

中圖分類號(hào):S879.1;S852.2 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2015)20-4929-03

DOI:10.14088/j.cnki.issn0439-8114.2015.20.001

Research Progress of Dairy Cow Milk Protein Synthesis Regulation

ZHOU Miao-miao,CUI Jing-xiang

(Institute of Animal Science, Weifang University of Science and Technology, Shouguang 262700, Shandong, China)

Abstract: Because the ideal amino acid content and composition,nutritional value of milk protein is very high.In addition to a small part from the blood,most of the protein in milk are synthesized in the mammary epithelial cells using amino acid or small peptide from the blood.Content and composition of milk protein will affect the milk nutritional and physiological characteristics and dairy production. Better understand the regulation mechanism of milk protein synthesis could help us to raise the protein content in milk by nutrition strategies.Therefore,the regulation of milk protein synthesis in bovine mammary epithelial cells is reviewed.

Key words: milk protein; synthesis; regulation

乳蛋白的氨基酸(Amino acids,AA)含量和比例比較理想,是一種營(yíng)養(yǎng)價(jià)值很高的蛋白質(zhì)。此外,某些乳蛋白成分還可以分解產(chǎn)生一些有特定生理功能的活性肽類物質(zhì)。乳蛋白是由乳腺組織的上皮細(xì)胞利用來(lái)自血液的游離AA或小肽從頭合成的。總體而言,乳腺合成蛋白質(zhì)的過(guò)程與其他組織相同,但乳腺上皮細(xì)胞合成的大部分蛋白質(zhì)最終要分泌出去。

乳腺組織具有很高的代謝活性,乳腺中的蛋白質(zhì)合成量占奶牛身體總蛋白質(zhì)合成量的43%[1]。乳蛋白含量及組成對(duì)其營(yíng)養(yǎng)價(jià)值、生理特性及其制品的產(chǎn)量影響很大,因此受到廣大制造商和消費(fèi)者的重視。乳蛋白含量的變化主要受營(yíng)養(yǎng)水平(AA和能量)、內(nèi)分泌系統(tǒng)以及乳腺中眾多參與蛋白質(zhì)代謝的調(diào)控因子的調(diào)控[2]。研究表明,蛋白質(zhì)翻譯調(diào)控對(duì)奶牛乳蛋白合成影響重大[3,4]。因此,只有更全面地了解乳蛋白合成的調(diào)控機(jī)制,才能更好地通過(guò)營(yíng)養(yǎng)策略來(lái)提高乳蛋白產(chǎn)量。已有研究顯示,乳蛋白的合成調(diào)控很可能是通過(guò)調(diào)節(jié)其基因翻譯起始因子和延長(zhǎng)因子實(shí)現(xiàn)的[4]。有試驗(yàn)表明,泌乳奶牛乳腺中核糖體蛋白S6的生理活性高于非泌乳奶牛[3],而翻譯起始因子eIF4E則同乳腺的發(fā)育和泌乳的起始有關(guān)[5]。盡管翻譯相關(guān)因子調(diào)控蛋白質(zhì)代謝的機(jī)理在很多組織中得到廣泛研究,然而這些翻譯因子在乳腺中的作用最近才引起關(guān)注。

1 內(nèi)分泌調(diào)控

同機(jī)體任何其他生理系統(tǒng)相比,內(nèi)分泌系統(tǒng)在調(diào)控乳腺發(fā)育、泌乳起始和維持泌乳過(guò)程中起主導(dǎo)作用[6]。

1.1 泌乳激素

泌乳相關(guān)激素(即:催乳素、氫化可的松和胰島素)對(duì)乳腺上皮細(xì)胞的功能分化及啟動(dòng)和維持泌乳來(lái)說(shuō)是必不可少的[7,8]。這三種泌乳激素聯(lián)合作用誘導(dǎo)乳蛋白的基因表達(dá)。催乳素在推動(dòng)妊娠期乳腺分化和啟動(dòng)產(chǎn)后乳腺泌乳方面發(fā)揮著主要作用[9],并它能在轉(zhuǎn)錄水平促進(jìn)乳蛋白的合成[10]。而氫化可的松和胰島素能增強(qiáng)催乳素對(duì)酪蛋白mRNAs累積的促進(jìn)作用[11,12]。此外,Menzies等[13]證實(shí),胰島素能促進(jìn)乳腺氨基酸攝取、乳蛋白基因表達(dá)以及酪蛋白合成。研究證實(shí),這些泌乳激素可能通過(guò)雷帕霉素靶蛋白(The mammalian target of rapamycin,mTOR)信號(hào)途徑調(diào)控乳蛋白合成。有報(bào)道稱,泌乳激素能增強(qiáng)AA對(duì)乳蛋白合成的促進(jìn)作用[2]。泌乳激素對(duì)乳蛋白合成的促進(jìn)作用伴隨著mTOR、核糖體S6激酶1 (Ribosomal S6 kinase 1,S6K1)以及起始因子eIF4E結(jié)合蛋白1(4E-BP1)的磷酸化。4E-BP1的磷酸化可以使其與eIF4E分離,進(jìn)而有助于eIF4E結(jié)合eIF4G來(lái)形成復(fù)合物啟動(dòng)翻譯起始[2];而S6K1的磷酸化則能活化多種蛋白質(zhì)翻譯元件[14]。

1.2 生長(zhǎng)激素

生長(zhǎng)激素(Growth hormone,GH)對(duì)奶牛乳腺具有明確的催乳作用[15]。但是,GH調(diào)控奶牛乳腺中蛋白質(zhì)合成的分子機(jī)制仍不十分清楚。Hayashi等[4]試驗(yàn)結(jié)果表明,GH能促進(jìn)mTOR信號(hào)途徑中S6K1磷酸化,上調(diào)乳蛋白翻譯起始和延長(zhǎng),進(jìn)而增加乳蛋白的合成[4]。而Sciascia等[16]研究則表明,GH通過(guò)胰島素樣生長(zhǎng)因子1-胰島素樣生長(zhǎng)因子1受體——絲裂原活化蛋白激酶(Insulin-like growth factor 1—insulin-like growth factor 1 receptor-mitogen-activated protein kinase,IGF1-IGF1R-MAPK)信號(hào)級(jí)聯(lián)調(diào)節(jié)eIF4E介導(dǎo)的核質(zhì)輸出和mRNA翻譯來(lái)增加乳蛋白含量。

2 營(yíng)養(yǎng)元素

泌乳期奶牛乳腺營(yíng)養(yǎng)代謝加劇,需要合成大量乳汁。乳蛋白合成需要消耗大量的AA和ATP,二者供應(yīng)充足時(shí)才能保證奶牛泌乳的需要。

2.1 氨基酸

牛乳中絕大部分的蛋白質(zhì)都是由乳腺上皮細(xì)胞利用血液中的AA或小肽從頭合成的,可利用AA的數(shù)量和質(zhì)量直接影響乳蛋白的品質(zhì)。一般而言,提高乳腺必需AA的攝取能增加乳蛋白合成量[17]。 Raggio等[18]研究發(fā)現(xiàn),給奶牛補(bǔ)充酪蛋白能提高奶牛乳蛋白濃度和產(chǎn)量。Burgos等[2]試驗(yàn)結(jié)果也表明,提高培養(yǎng)液中AA濃度增加了乳蛋白的合成量。近年來(lái),研究發(fā)現(xiàn)除作為蛋白質(zhì)合成的前體物質(zhì)之外,AA也可作為信號(hào)分子調(diào)控蛋白質(zhì)的合成[19]。AA可以通過(guò)調(diào)控翻譯起始因子和延長(zhǎng)因子的功能,進(jìn)而全面調(diào)控蛋白質(zhì)基因mRNA的翻譯[4]。AA的這一調(diào)控作用是通過(guò)傳統(tǒng)激素信號(hào)通路介導(dǎo)的信號(hào)傳導(dǎo)來(lái)實(shí)現(xiàn)。目前了解比較清楚的一個(gè)AA誘導(dǎo)的信號(hào)傳導(dǎo)途徑是mTOR信號(hào)通路[20]。AA通過(guò)活化mTOR來(lái)調(diào)控4E-BP1和S6K1等蛋白質(zhì)的磷酸化狀態(tài),進(jìn)而參與蛋白質(zhì)的合成調(diào)控。

盡管AA通過(guò)翻譯相關(guān)因子調(diào)控蛋白質(zhì)代謝的機(jī)理在很多組織中得到廣泛研究,然而其在乳腺中的這種作用最近才引起關(guān)注。Moshel等[21]利用體外培養(yǎng)的泌乳乳腺上皮細(xì)胞模型研究了AA對(duì)翻譯過(guò)程的調(diào)控作用,結(jié)果發(fā)現(xiàn),AA經(jīng)由mTOR信號(hào)途徑調(diào)控mRNA翻譯,進(jìn)而影響乳腺上皮細(xì)胞中乳蛋白的合成速率。Prizant等[22]研究了體外培養(yǎng)的泌乳鼠乳腺上皮細(xì)胞中必需AA通過(guò)mTOR通路在蛋白合成中的作用,結(jié)果發(fā)現(xiàn),來(lái)自于AA的正負(fù)調(diào)控信號(hào)通過(guò)mTOR信號(hào)傳導(dǎo)通路結(jié)合胰島素調(diào)控來(lái)調(diào)節(jié)總蛋白和乳腺上皮細(xì)胞中特殊乳蛋白的合成速率。支鏈AA,尤其是異亮氨酸(Ile)和亮氨酸(Leu)通過(guò)該通路調(diào)控乳蛋白的合成[23,24]。研究發(fā)現(xiàn),清除細(xì)胞外AA或Leu能抑制從mTOR到p70 S6激酶和4E-BP的信號(hào)傳導(dǎo)活性,AA尤其是Leu通過(guò)控制Rheb-GTP來(lái)調(diào)控mTOR[25,26]。Arriola等[24]研究發(fā)現(xiàn),Ile可作為信號(hào)因子正調(diào)控mTOR信號(hào)通路,進(jìn)而增加乳蛋白的合成。Appuhamy等[27]在MAC-T細(xì)胞培養(yǎng)液中添加必需氨基酸(Essential amino acid,EAA),結(jié)果發(fā)現(xiàn)EAA通過(guò)增強(qiáng)mTOR和4EBP1磷酸化,降低eEF2磷酸化,提高了乳腺組織中酪蛋白合成率。有報(bào)道稱,泌乳相關(guān)激素能增強(qiáng)AA對(duì)乳蛋白合成的促進(jìn)作用[2]。mTOR似乎是AA、胰島素等生長(zhǎng)因子誘導(dǎo)產(chǎn)生的信號(hào)傳導(dǎo)的綜合位點(diǎn),這兩種信號(hào)傳導(dǎo)結(jié)合才能最大地刺激蛋白質(zhì)合成[19]。

2.2 能量

泌乳期乳腺需要大量的能量供應(yīng)來(lái)維持其旺盛的代謝活動(dòng)。Hanigan等[28]估測(cè),乳腺中所產(chǎn)生的ATP幾乎有一半用于蛋白質(zhì)的合成。一般來(lái)說(shuō),增加非結(jié)構(gòu)性碳水化合物的攝取能提高奶產(chǎn)量、乳蛋白產(chǎn)量和氮利用效率[17,29]。體內(nèi)外試驗(yàn)結(jié)果均顯示,除作為底物參與細(xì)胞內(nèi)乳蛋白的合成外,能量狀態(tài)也可直接通過(guò)信號(hào)傳導(dǎo)參與蛋白質(zhì)合成[30]。Appuhamy等[31]利用奶牛乳腺細(xì)胞體外培養(yǎng)模型研究發(fā)現(xiàn),提高能量水平能增加S6K和mTOR的磷酸化。Rius等[32]證實(shí),給奶牛灌注淀粉增加了S6K和mTOR的磷酸化,同時(shí)也提高了乳蛋白產(chǎn)量。

3 乳腺

乳腺自身有能力調(diào)控其營(yíng)養(yǎng)攝取來(lái)維持乳汁的合成。這一調(diào)控作用主要是通過(guò)調(diào)節(jié)乳腺血流量及乳腺對(duì)動(dòng)脈血中乳汁前體物的攝取量實(shí)現(xiàn)的[1,33]。此外,乳腺還具有細(xì)胞內(nèi)調(diào)控乳汁合成的能力,例如上皮細(xì)胞內(nèi)產(chǎn)生的泌乳反饋抑制蛋白能影響奶產(chǎn)量[34]。這種反饋抑制蛋白通過(guò)降低蛋白質(zhì)合成,或增加新合成酪蛋白的降解來(lái)調(diào)控乳蛋白的分泌[35]。

4 小結(jié)

綜上所述,奶牛乳腺細(xì)胞中乳蛋白的合成受內(nèi)分泌(催乳素、胰島素、氫化可的松、生長(zhǎng)激素等)、營(yíng)養(yǎng)元素(氨基酸和能量)以及乳腺本身等方面的調(diào)控。這些因素對(duì)乳蛋白的合成調(diào)控很可能是通過(guò)調(diào)節(jié)基因翻譯起始和延長(zhǎng)因子實(shí)現(xiàn)的。但是,這些翻譯相關(guān)因子在乳腺蛋白質(zhì)合成過(guò)程中的作用機(jī)理研究并不透徹。因此,乳蛋白合成調(diào)控機(jī)理方面的研究將是今后奶牛泌乳生理研究的重點(diǎn)和熱點(diǎn)。

參考文獻(xiàn):

[1] THIVIERGE M C, PETITCLERC D, BERNIER J F, et al. Variations in mammary protein metabolism during the natural filling of the udder with milk over a 12-h period between two milkings: leucine kinetics[J]. J Dairy Sci, 2002, 85(11): 2974-2985.

[2] BURGOS S A, DAI M, CANT J P. Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway[J]. J Dairy Sci, 2010, 93(1): 153-161.

[3] TOERIEN C A, CANT J P. Abundance and phosphorylation state of translation initiation factors in mammary glands of lactating and nonlactating dairy cows[J]. J Dairy Sci, 2007, 90(6): 2726-2734.

[4] HAYASHI A A, NONES K, ROY N C, et al. Initiation and elongation steps of mRNA translation are involved in the increase in milk protein yield caused by growth hormone administration during lactation[J]. J Dairy Sci, 2009, 92(5): 1889-1899.

[5] LONG E, LAZARIS-KARATZAS A, KARATZAS C, et al. Overexpressing eukaryotic translation initiation factor 4E stimulates bovine mammary epithelial cell proliferation[J]. Int J Biochem Cell B, 2001, 33(2): 133-141.

[6] AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows[J]. J Dairy Sci, 2006, 89(4): 1222-1234.

[7] BOLANDER F F, NICHOLAS K R, WYKO J J V, et al. Insulin is essential for accumulation of casein mRNA in mouse mammary epithelial cells[J]. Cell Biol,1981,78(9):5682-5684.

[8] BRENNAN A J, SHARP J A, LEF?魬VRE C M, et al. Uncoupling the mechanisms that facilitate cell survival in hormone-deprived bovine mammary explants[J]. J Mol Endocrinol, 2008, 41: 103-116.

[9] OAKES S R, ROGERS R L, NAYLOR M J, et al. Prolactin regulation of mammary gland development[J].J Mammary Gland Biol,2008,13:13-28.

[10] MATUSIK R J, ROSEN J M. Prolactin induction of casein mRNA in organ culture. A model system for studying peptide hormone regulation of gene expression[J]. J Biol Chem, 1978,253(7): 2343-2347.

[11] KABOTYANSKI E B,RIJNKELS M,F(xiàn)REEMAN-ZADROWSKI C, et al. Lactogenic hormonal induction of long distance interactions between beta-casein gene regulatory elements[J]. J Biol Chem, 2009, 284(34): 22815-22824.

[12] CHOI K M, BARASH I, RHOADS R E. Insulin and prolactin synergistically stimulate beta-casein messenger ribonucleic acid translation by cytoplasmic polyadenylation[J]. Mol Endocrinol, 2004, 18(7): 1670-1686.

[13] MENZIES K K, LEF?魬VRE C, MACMILLAN K L, et al. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland[J]. Funct Integr Genomic, 2009, 9(2): 197-217.

[14] MA X M, BLENIS J. Molecular mechanisms of mTOR mediated translational control[J]. Nat Rev Mol Cell Bio, 2009, 10:307-318.

[15] MOLENTO C F, BLOCK E, CUE R I, et al. Effects of insulin, recombinant bovine somatotropin, and their interaction on insulin-like growth factor-I secretion and milk protein production in dairy cows[J]. J Dairy Sci,2002,85(4):738-747.

[16] SCIASCIA Q, PACHECO D, MCCOARD S A. Increased milk protein synthesis in response to exogenous growth hormone is associated with changes in mechanistic (mammalian) target of rapamycin (mTOR)C1-dependent and independent cell signaling[J]. J Dairy Sci, 2013, 96(4): 2327-2338.

[17] JOHNSTON S L, KITSON K E, TWEEDIE J W, et al. γ-Glutamyl transpeptidase inhibition suppresses milk protein synthesis in isolated ovine mammary cells[J]. J Dairy Sci, 2004, 87(2): 321-329.

[18] RAGGIO G, LEMOSQUET S, LOBLEY G E, et al. Effect of casein and propionate supply on mammary protein metabolism in lactating dairy cows[J]. J Dairy Sci, 2006, 89(11): 4340-4351.

[19] KIMBALL S R, JEFFERSON L S. Control of protein synthesis by amino acid availability[J]. Curr Opin Clin Nutr Metab Care, 2002, 5(1): 63-67.

[20] JEFFERSON L S, KIMBALL S R. Amino acids as regulators of gene expression at the level of mRNA translation[J]. J Nutr, 2003, 133(6): 2046S-2051S.

[21] MOSHEL Y, RHOADS R E, BARASH I. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells[J]. J Cell Biochem, 2006, 98(3): 685-700.

[22] PRIZANT R L, BARASH I. Negative effects of the amino acids Lys, His, and Thr on S6K1 phosphorylation in mammary epithelial cells[J]. J Cell Biochem,2008,105(4):1038-1047.

[23] KIMBALL S R, JEFFERSON L S. New functions for amino acids: effects on gene transcription and translation[J]. Am J Clin Nutr, 2006, 83(2): 500S-507S.

[24] ARRIOLA S I, SINGER L M, LIN X Y, et al. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue[J]. J Dairy Sci, 2014, 97(2): 1047-1056.

[25] LONG X, ORTIZ-VEGA S, LIN Y, et al. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency[J]. J Biol Chem, 2005, 280(25): 23433-23436.

[26] AVRUCH J, LONG X, ORTIZ-VEGA S, et al. Amino acid regulation of TOR complex 1[J]. Am J Physiol Endocrinol Metab, 2009, 296(4): E592-E602.

[27] APPUHAMY J A D R N, NAYANANJALIE W A,ENGLAND E M, et al. Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells[J]. J Dairy Sci,2014,97(1):419-429.

[28] HANIGAN M D, FRANCE J, MABJEESH S J, et al. High rates of mammary tissue protein turnover in lactating goats are energetically costly[J]. J Nutr, 2009, 139(6): 1118-1127.

[29] BRODERICK G A. Effects of varying dietary protein and energy levels on the production of lactating dairy cows[J]. J Dairy Sci, 2003, 86(4): 1370-1381.

[30] PROUD C G. Signalling to translation: How signal transduction pathways control the protein synthetic machinery[J]. Biochem J, 2007, 403(2): 217-234.

[31] APPUHAMY J A D R N, BELL A L, ESCOBAR J, et al. Effects of essential amino acid deprivation on protein synthesis signaling in bovine mammary epithelial cells in vitro[A]. XIth International Symposium Ruminant Physiology[C]. Clermont-Ferrand, France: Wageningen Academic Publishers, 2009. 424-425.

[32] RIUS A G, APPUHAMY J A D R N, CYRIAC J, et al. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids[J]. J Dairy Sci, 2010, 93(7): 3114-3127.

[33] BEQUETTE B J, HANIGAN M D, CALDER A G, et al. Amino acid exchange by the mammary gland of lactating goats when histidine limits milk production[J]. J Dairy Sci, 2000, 83(4): 765-775.

[34] WILDE C J, ADDEY C V P, BODDY L M, et al. Autocrine regulation of milk secretion by a protein in milk[J]. Biochem J, 1995, 305: 51-58.

[35] RENNISON M E, KERR M, ADDEY C V P, et al. Inhibition of constitutive protein secretion from lactating mouse mammary epithelial cells by FIL (feedback inhibitor of lactation), a secreted milk protein[J]. J Cell Sci, 1993, 106: 641-648.

主站蜘蛛池模板: 国产极品美女在线观看| 综合色婷婷| 精品国产中文一级毛片在线看 | 全部毛片免费看| 精品国产黑色丝袜高跟鞋| 亚洲天堂.com| 欧美日韩国产在线观看一区二区三区| a天堂视频| 国产午夜无码片在线观看网站| 国产高清无码麻豆精品| 四虎永久免费在线| 久久国产香蕉| 中文字幕1区2区| 亚洲第一视频网| 71pao成人国产永久免费视频| 精品第一国产综合精品Aⅴ| 亚洲欧美一区二区三区蜜芽| 亚洲人成网线在线播放va| 五月激情婷婷综合| 亚洲色图欧美视频| 91探花国产综合在线精品| 夜夜操狠狠操| 福利一区在线| 久久综合伊人77777| 亚洲精品视频免费| 亚洲欧美不卡视频| 又猛又黄又爽无遮挡的视频网站| 久久综合九色综合97婷婷| 免费无码又爽又刺激高| 亚洲AV成人一区国产精品| 国产在线91在线电影| 欧美 亚洲 日韩 国产| 欧美五月婷婷| 欧美成人日韩| 亚洲婷婷在线视频| 第一区免费在线观看| 澳门av无码| 九色视频最新网址| 亚洲欧洲自拍拍偷午夜色无码| 中文字幕亚洲精品2页| 五月婷婷综合色| 国产真实乱了在线播放| 亚洲熟妇AV日韩熟妇在线| www.日韩三级| 久久毛片网| 成人午夜免费观看| 亚洲人成网站色7799在线播放| 久久中文电影| 欧美自慰一级看片免费| 91久久夜色精品| 国产特级毛片| 欧美色综合网站| 亚洲国产成人在线| 综合亚洲色图| 蜜桃视频一区二区| 亚洲成网777777国产精品| 免费无码又爽又刺激高| 一本大道香蕉久中文在线播放 | 免费国产福利| 中文字幕av无码不卡免费 | 伊人久久精品亚洲午夜| a天堂视频| 久久99国产综合精品1| 无码国内精品人妻少妇蜜桃视频| 青青青国产免费线在| 亚洲AⅤ综合在线欧美一区| 日本人又色又爽的视频| 亚洲AⅤ综合在线欧美一区| 免费av一区二区三区在线| 免费又黄又爽又猛大片午夜| 国产青青草视频| 亚洲乱码在线播放| 免费看a毛片| 91 九色视频丝袜| 国产精品亚洲va在线观看| 精品视频免费在线| 无码免费视频| 国产精品黑色丝袜的老师| 日本三区视频| 第九色区aⅴ天堂久久香| 欧美三级日韩三级| 国产第一页屁屁影院|