999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

STRONG LAW OF LARGE NUMBERS AND GROWTH RATE FOR NOD SEQUENCES

2015-11-14 07:09:42MASonglinWANGXuejun
巢湖學(xué)院學(xué)報 2015年3期

MA Song-linWANG Xue-jun

(1 College of Applied Mathematics,Chaohu College,Chaohu Anhui 238000)

(2 School of Mathematical Sciences,Anhui University,Hefei Anhui 230039)

STRONG LAW OF LARGE NUMBERS AND GROWTH RATE FOR NOD SEQUENCES

MA Song-lin1WANG Xue-jun2

(1 College of Applied Mathematics,Chaohu College,Chaohu Anhui 238000)

(2 School of Mathematical Sciences,Anhui University,Hefei Anhui 230039)

In the paper,we get the precise results of Hájek-Rényi type inequalities for the partial sums of negatively orthant dependent sequences,which improve the results of Theorem 3.1 and Corollary 3.2 in Kim(2006)and the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.

negatively orthant dependent sequences;strong law of large numbers growth rate

I Introduction

We use the following notations.Letbe a sequence of random variables defined on a fixed probability space.Denote

Hájek-Rényi(1955)proved the following important inequality.Ifis a sequence of independent random variables with mean zero,andis a nondecreasing sequence of positive real numbers, then for any ε>0 and any positive integer m<n,

In the paper,we will further study Hájek-Rényi type inequality for negatively orthant dependent sequences and give the better coefficient(4ε-2(log3n+2)2)than that(8ε-2(log3n+2)2)in Kim(2006)and the condition<∞in Kim(2006)can be removed.In addition we obtain the the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.

Definition 1.1

A finite collection of random variables X1,X2,…,Xnis said to be negatively upper orthant dependent(NUOD),if for all real numbers x1,x2,…,xn,

and negatively lower orthant dependent(NLOD)if for all real numbers x1,x2,…,xn,

A finite collection of random variables X1,X2,…,Xnis said to be negatively orthant dependent(NOD)if they are both NUOD and NLOD.

Lemma 1.1 (cf.Bozorgnia et al.,1996).Letbe a sequence of NOD random variables, f1,f2… be all nondecreasing(or all nonincreasing)functions,thenis still a sequence of NOD.

Lemma 1.2 (cf.Kim,2006).Let X1,X2,…,Xnbe NOD random variables with EXn=0 and EX2n<∞for all n≥1.Then we have

for all integers m,p≥1,m+p≤n.Moreover,we have

By Lemma 1.1 and Lemma 1.2,we can get the following corollary.

Lemma 1.3(cf.Hu,et al.,2008,Lemma 1.5).Letbe a random variables.Letbe a nondecreasing unbounded sequence of positive numbers and α1,α2,… be nonnegative numbers.Let r and C be fixed positive numbers.Assume that for each n≥1

Lemma 1.4 (cf. Fazekas and Klesov,2001,Corollary 2.1).Letbe a nondecreasing unbounded sequence of positive numbers and α1,α2,…be nonnegative numbers.Denote.Let r be a fixed positive number Satisfying(1.7).If

then(1.9)-(1.14)hold.

II Hájek-Rényi type inequalities for NOD

In this section,we will give Hájek-Rényi type inequalities for NOD sequences,which improve the results of Kim(2006).

III SLLN AND GROWTH RATE FOR NOD

Assume that

That is to say(1.15)holds.By Remark 2.1 in Fazekas and Klesov(2001),(1.15)implies(1.16).By Lemma 1.4,we can obtain(3.12)-(3.17)immediately.

Remark 3.1. In this section,not only the strong laws of large numbers are obtained,but also the strong growth rate are given.So our results improve some corresponding results for NOD sequences in Kim(2006).

[1]Bozorgnia,A.,Patterson,R.F.,Taylor,R.L..Limit theorems for dependent random variables[C].World Congress Nonlinear Analysts’92,1996:1639-1650.

[2]Christofides,T.C..Maximal inequalities for demimartingales and a strong law of large numbers[J].Statist.Probab.Lett.,2000,(50):357-363.

[3]Fazekas,I.,Klesov,O..A general approach to the strong law of large numbers[J].Theory Probab.Appl.,2001,(45):436-449.

[4]Gan,S.X..The Hájek-Rényi inequality for Banach space valued martingales and the p smoothness of Banach space[J].Statist. Probab.Lett.,1997,(32):245-248.

[5]Hájek-Rényi,A..A generalization of an inequality of Kolmogorov[J].Acta Math.Acad.Sci.Hungar.,1955,(6):281-284.

[6]Hu,S.H.,Chen,G.J.,Wang,X.J..On extending the Brunk-Prokhorov strong law of large numbers for martingale differences[J]. Statist.Probab.Lett.,2008,(78):3187-3194.

[7]Hu,S.H.,Wang,X.J.,Yang,W.Z.,Zhao,T..The Hájek-Rényi type inequality for associated random variables[J].Statist. Probab.Lett.,2009,(79):884-888.

[8]Joag-Dev,K.,Proschan,F(xiàn)..Negative association of random variables with applications[J].Ann.Statist.,1983,(1):286-295.

[9]Kim,H.C..The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables[J].Int.J.Contemp.Math.Sci.,2006,(6):297-303.

[10]Liu,J.J.,Gan,S.X.,Chen,P.Y..The Hájek-Rényi inequality for NA random variables and its application[J].Statist. Probab.Lett.,1999,(43):99-105.

陳 侃

O211.4 Document code:A Article ID:1672-2868(2015)03-0001-06

Eceived date:2015-03-03

Fund Project:Foundation of Anhui Educational Committee(No.KJ2013Z225)

Author:Ma Songlin(1978-),male,Lujiang,Anhui Province,Scool of Applied Mathematics,Chaohu College.Research direction:probability limit theory.

主站蜘蛛池模板: 久久综合成人| 草草线在成年免费视频2| 四虎国产永久在线观看| 久久99热这里只有精品免费看| 亚洲欧美日韩天堂| 无码人妻免费| 超碰aⅴ人人做人人爽欧美| 国产成人凹凸视频在线| 久久人体视频| 国产男女免费视频| 亚洲精品免费网站| 国产a v无码专区亚洲av| 91色国产在线| 国产一二三区视频| 在线免费看片a| 欧美日本一区二区三区免费| 3344在线观看无码| 欧美人人干| 538精品在线观看| 亚洲高清中文字幕| 美女内射视频WWW网站午夜| 国产三级精品三级在线观看| 91区国产福利在线观看午夜 | www.精品国产| 91精品专区| 亚洲人成在线精品| 幺女国产一级毛片| 激情综合五月网| 国产一区二区三区日韩精品| 啦啦啦网站在线观看a毛片| 国产区在线看| 国产精品不卡永久免费| 91久久性奴调教国产免费| 99精品欧美一区| 日本亚洲成高清一区二区三区| 久久久久青草大香线综合精品| 国产成人精品一区二区不卡| 久久大香香蕉国产免费网站| 久久久久无码国产精品不卡| 中文字幕首页系列人妻| 欧美视频在线第一页| 欧美在线一二区| 女人18毛片水真多国产| 久久福利片| 欧美日韩资源| 激情综合激情| 国产精品嫩草影院视频| 九九热视频精品在线| 69av在线| 欧美午夜性视频| 国产青青操| 欧美精品成人一区二区在线观看| 高潮毛片免费观看| 色AV色 综合网站| 性视频一区| 亚洲美女高潮久久久久久久| 国产精品成人一区二区不卡| 国产欧美日韩一区二区视频在线| 亚洲精品成人7777在线观看| 国产综合无码一区二区色蜜蜜| 久久免费看片| 高清不卡毛片| 国产精品亚欧美一区二区| 国产小视频网站| 久久久久亚洲AV成人人电影软件| 内射人妻无码色AV天堂| 欧美日韩国产成人高清视频| 色久综合在线| 亚洲无码视频喷水| 免费观看精品视频999| 97成人在线观看| 国内精品91| 国产乱人视频免费观看| 日韩高清成人| 国产精品污污在线观看网站| 国产成人综合久久精品下载| 亚洲另类国产欧美一区二区| 人妻中文久热无码丝袜| 国产精品亚洲αv天堂无码| 99ri精品视频在线观看播放| 亚洲国产成熟视频在线多多| 亚洲国产日韩在线成人蜜芽|